全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Overview of the Neurological Mechanisms of Juvenile Myoclonic Epilepsy and Antiepileptic Drugs

DOI: 10.4236/vp.2025.112017, PP. 242-250

Keywords: Epilepsy, Myoclonic, Antiepileptics, Voltage-Gated, Inhibitory, Excitatory, GABRA1, CACNB4, EFHC1, CLCN2, Glutamatergic, Synchronization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Juvenile Myoclonic Epilepsy (JME) is a prevalent form of generalized epilepsy, predominantly affecting adolescents and young adults. It is characterized by myoclonic seizures, grand mal seizures, and abnormal electroencephalogram (EEG) findings. Though the exact etiology remains unclear, genetic factors, particularly mutations in ion channels and neurotransmitter receptors, play a crucial role in its pathogenesis. The condition is marked by an imbalance between excitatory and inhibitory signaling in the brain, involving neurotransmitters such as glutamate and gamma-aminobutyric acid (GABA). This imbalance leads to neuronal hyperexcitability, with excessive synchronization of neuronal firing resulting in seizures. Additionally, mutations in genes like GABRA1, CACNB4, and EFHC1 are associated with altered synaptic transmission and calcium signaling, further contributing to the pathophysiology of JME. The primary treatment for JME involves antiepileptic drugs (AEDs), which aim to restore the excitatory-inhibitory balance. These drugs function by modulating ion channels, enhancing GABAergic inhibition, and blocking glutamate receptors. By stabilizing neuronal activity, AEDs reduce the occurrence of seizures and improve the quality of life for patients. This paper provides a brief overview of the neurological mechanisms underlying JME and the role of AEDs in its management.

References

[1]  Abou-Khalil, B. (2008). Levetiracetam in the Treatment of Epilepsy. Neuropsychiatric Disease and Treatment, 4, 507-523.
https://doi.org/10.2147/ndt.s2937
[2]  Akyuz, E., Polat, A. K., Eroglu, E., Kullu, I., Angelopoulou, E., & Paudel, Y. N. (2021). Revisiting the Role of Neurotransmitters in Epilepsy: An Updated Review. Life Sciences, 265, Article ID: 118826.
https://doi.org/10.1016/j.lfs.2020.118826
[3]  Amrutkar, C. V., & Riel-Romero, R. M. (2023). Juvenile Myoclonic Epilepsy. StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK537109/
[4]  Armijo, J., Shushtarian, M., Valdizan, E., Cuadrado, A., Cuevas, I., & Adin, J. (2005). Ion Channels and Epilepsy. Current Pharmaceutical Design, 11, 1975-2003.
https://doi.org/10.2174/1381612054021006
[5]  Choi, H., & Morrell, M. J. (2003). Review of Lamotrigine and Its Clinical Applications in Epilepsy. Expert Opinion on Pharmacotherapy, 4, 243-251.
https://doi.org/10.1517/14656566.4.2.243
[6]  Cvetkovska, E., Kuzmanovski, I., Sazdova-Burneska, S., & Aleksovska-Stanojkovska, L. (2016). Clinical Genetic Study in Juvenile Myoclonic Epilepsy. Seizure, 23, 903-905.
[7]  de Nijs, L., Wolkoff, N., Coumans, B., Delgado-Escueta, A. V., Grisar, T., & Lakaye, B. (2012). Mutations of EFHC1, Linked to Juvenile Myoclonic Epilepsy, Disrupt Radial and Tangential Migrations during Brain Development. Human Molecular Genetics, 21, 5106-5117.
https://doi.org/10.1093/hmg/dds356
[8]  Delgado-Escueta, A. V. et al. (2016). The Quest for Juvenile Myoclonic Epilepsy Genes. Epilepsy & Behavior, 28, S52-S57.
[9]  Delgado‐Escueta, A. V., Greenberg, D. A., Treiman, L., Liu, A., Sparkes, R. S., Barbetti, A. et al. (1989). Mapping the Gene for Juvenile Myoclonic Epilepsy. Epilepsia, 30, S8-S18.
https://doi.org/10.1111/j.1528-1157.1989.tb05835.x
[10]  Epilepsy Foundation (n.d.). Juvenile Myoclonic Epilepsy.
https://www.epilepsy.com/what-is-epilepsy/syndromes/juvenile-myoclonic-epilepsy
[11]  Fox, P. M., Malepati, S., Manaster, L., Rossignol, E., & Noebels, J. L. (2024). Developing a Pathway to Clinical Trials for CACNA1A-Related Epilepsies: A Patient Organization Perspective. Therapeutic Advances in Rare Disease, 5, 26330040241245725.
https://doi.org/10.1177/26330040241245725
[12]  Fu, X., Wang, Y. J., Kang, J. Q., & Czuczwar, S. J. (2022). Chap. 7. GABAA Receptor Variants in Epilepsy. In S. J. Czuczwar (Ed.), Epilepsy. Exon Publications.
https://www.ncbi.nlm.nih.gov/books/NBK580621/
[13]  George, A. L. (2005). Inherited Disorders of Voltage-Gated Sodium Channels. Journal of Clinical Investigation, 115, 1990-1999.
https://doi.org/10.1172/jci25505
[14]  Giuliano, L., Mainieri, G., Aguglia, U., Bilo, L., Durante, V., Ermio, C. et al. (2021). Long-term Prognosis of Juvenile Myoclonic Epilepsy: A Systematic Review Searching for Sex Differences. Seizure, 86, 41-48.
https://doi.org/10.1016/j.seizure.2021.01.005
[15]  Greenlund, I. M., & Carter, J. R. (2022). Sympathetic Neural Responses to Sleep Disorders and Insufficiencies. American Journal of Physiology-Heart and Circulatory Physiology, 322, H337-H349.
https://doi.org/10.1152/ajpheart.00590.2021
[16]  Hanada, T. (2020). Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules, 10, Article 464.
https://doi.org/10.3390/biom10030464
[17]  Huang, T., Lai, M., Chen, Y., & Huang, C. (2023). The Roles of Glutamate Receptors and Their Antagonists in Status Epilepticus, Refractory Status Epilepticus, and Super-Refractory Status Epilepticus. Biomedicines, 11, Article 686.
https://doi.org/10.3390/biomedicines11030686
[18]  Kang, J. (2017). Defects at the Crossroads of Gabaergic Signaling in Generalized Genetic Epilepsies. Epilepsy Research, 137, 9-18.
https://doi.org/10.1016/j.eplepsyres.2017.08.013
[19]  Krishnan, P., Sinha, S., Taly, A. B., Ramachandraiah, C. T., Rao, S., & Satishchandra, P. (2012). Sleep Disturbances in Juvenile Myoclonic Epilepsy: A Sleep Questionnaire-Based Study. Epilepsy & Behavior, 23, 305-309.
https://doi.org/10.1016/j.yebeh.2011.12.018
[20]  Kwan, P., Sills, G. J., & Brodie, M. J. (2001). The Mechanisms of Action of Commonly Used Antiepileptic Drugs. Pharmacology & Therapeutics, 90, 21-34.
https://doi.org/10.1016/s0163-7258(01)00122-x
[21]  Lyseng-Williamson, K. A., & Yang, L. P. H. (2007). Topiramate: A Review of Its Use in the Treatment of Epilepsy. Drugs, 67, 2231-2256.
https://doi.org/10.2165/00003495-200767150-00008
[22]  Macdonald, R. L., & Kelly, K. M. (1995). Antiepileptic Drug Mechanisms of Action. Epilepsia, 36, S2-S12.
https://doi.org/10.1111/j.1528-1157.1995.tb05996.x
[23]  Martin, S., Strzelczyk, A., Lindlar, S., Krause, K., Reif, P. S., Menzler, K. et al. (2019). Drug-resistant Juvenile Myoclonic Epilepsy: Misdiagnosis of Progressive Myoclonus Epilepsy. Frontiers in Neurology, 10, Article 946.
https://doi.org/10.3389/fneur.2019.00946
[24]  Meldrum, B. S., & Rogawski, M. A. (2007). Molecular Targets for Antiepileptic Drug Development. Neurotherapeutics, 4, 18-61.
https://www.sciencedirect.com/science/article/pii/S1878747923006876
https://doi.org/10.1016/j.nurt.2006.11.010
[25]  Ngomba, R. T., Santolini, I., Salt, T. E., Ferraguti, F., Battaglia, G., Nicoletti, F. et al. (2011). Metabotropic Glutamate Receptors in the Thalamocortical Network: Strategic Targets for the Treatment of Absence Epilepsy. Epilepsia, 52, 1211-1222.
https://doi.org/10.1111/j.1528-1167.2011.03082.x
[26]  Niemeyer, M. I., Yusef, Y. R., Cornejo, I., Flores, C. A., Sepúlveda, F. V., & Cid, L. P. (2004). Functional Evaluation of Human CLC-2 Chloride Channel Mutations Associated with Idiopathic Generalized Epilepsies. Physiological Genomics, 19, 74-83.
https://doi.org/10.1152/physiolgenomics.00070.2004
[27]  Sarola, G. L., & Holton, K. F. (2021). Brain Concentrations of Glutamate and GABA in Human Epilepsy: A Review. Seizure, 91, 213-227.
https://doi.org/10.1016/j.seizure.2021.06.028
[28]  Sears, S. M., & Hewett, S. J. (2021). Influence of Glutamate and GABA Transport on Brain Excitatory/Inhibitory Balance. Experimental Biology and Medicine, 246, 1069-1083.
https://doi.org/10.1177/1535370221989263
[29]  Sivakumar, S., Ghasemi, M., & Schachter, S. C. (2022). Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals, 15, Article 1297.
https://doi.org/10.3390/ph15101297
[30]  Strigaro, G., Cantello, R., & Comi, C. (2012). Abnormal Motor Cortex Plasticity in Juvenile Myoclonic Epilepsy. Seizure, 21, 537-540.
[31]  Wang, Y., Tan, B., Wang, Y., & Chen, Z. (2021). Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules, 26, Article 2258.
https://doi.org/10.3390/molecules26082258
[32]  Wolf, P., Yacubian, E. M. T., Avanzini, G., Sander, T., Schmitz, B., Wandschneider, B., & Koepp, M. (2017). Juvenile Myoclonic Epilepsy: A System Disorder of the Brain. Epilepsy Research, 114, 2-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133