全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Literature Review on Malaria in Saudi Arabia

DOI: 10.4236/aid.2025.152018, PP. 229-261

Keywords: Malaria, Saudi Arabia, Malaria Systematic Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

Significant progress has been made in malaria control worldwide over the past decade, and as more countries enter the malaria elimination phase, attention is now focused on identifying effective strategies to reduce the incidence of malaria. Saudi Arabia experienced a malaria outbreak in 1998. In Saudi Arabia, malaria control is a major challenge, with many cases attributed to imported cases in the regions and cities of Jazan, Makkah, Madinah, Jeddah, and Asir. Jazan has the highest number of malaria cases in the Kingdom.

References

[1]  World Malaria Report 2022.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
[2]  World Malaria Report 2021.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[3]  World Malaria Report 2020.
https://www.who.int/publications/i/item/9789240015791
[4]  Elagali, A., Shubayr, M., Noureldin, E., Alene, K.A. and Elagali, A. (2024) Spatiotemporal Distribution of Malaria in the Kingdom of Saudi Arabia. Tropical Medicine and Infectious Disease, 9, Article 16.
https://doi.org/10.3390/tropicalmed9010016
[5]  Al-Mekhlafi, H.M., Madkhali, A.M., Ghailan, K.Y., Abdulhaq, A.A., Ghzwani, A.H., Zain, K.A., et al. (2021) Residual Malaria in Jazan Region, South-western Saudi Arabia: The Situation, Challenges and Climatic Drivers of Autochthonous Malaria. Malaria Journal, 20, Article No. 315.
https://doi.org/10.1186/s12936-021-03846-4
[6]  Hassanein, R.A.M., Alkurbi, M.O. and Alsobhi, S.H. (2023) Prevalence of Plasmodium Species in Badr Governorate, Madinah Province, Saudi Arabia Using Microscopy and Rapid Diagnostic Test. Medicine, 102, e35516.
https://doi.org/10.1097/md.0000000000035516
[7]  Abdalal, S.A., Yukich, J., Andrinoplous, K., Harakeh, S., Altwaim, S.A., Gattan, H., et al. (2023) An Insight to Better Understanding Cross Border Malaria in Saudi Arabia. Malaria Journal, 22, Article No. 37.
https://doi.org/10.1186/s12936-023-04467-9
[8]  Alhaddad, M.J., Alsaeed, A., Alkhalifah, R.H., Alkhalaf, M.A., Altriki, M.Y., Almousa, A.A., et al. (2023) A Surge in Malaria Cases in the Eastern Health Region of Saudi Arabia during the COVID-19 Pandemic. Cureus, 15, e37740.
https://doi.org/10.7759/cureus.37740
[9]  Alfaleh, A.F., Alkattan, A.N., Alzaher, A.A., Sagor, K.H. and Ibrahim, M.H. (2023) Status of Malaria Infection in KSA during 2017-2021. Journal of Taibah University Medical Sciences, 18, 1555-1556.
https://doi.org/10.1016/j.jtumed.2023.07.006
[10]  Monroe, A., Moore, S., Koenker, H., Lynch, M. and Ricotta, E. (2019) Measuring and Characterizing Night Time Human Behaviour as It Relates to Residual Malaria Transmission in Sub-Saharan Africa: A Review of the Published Literature. Malaria Journal, 18, Article No. 6.
https://doi.org/10.1186/s12936-019-2638-9
[11]  Al-Awadhi, M., Ahmad, S. and Iqbal, J. (2021) Current Status and the Epidemiology of Malaria in the Middle East Region and beyond. Microorganisms, 9, Article 338.
https://doi.org/10.3390/microorganisms9020338
[12]  Abdelwahab, S.I., Elhassan, I.M., Albasheer, O., Taha, M.M.E., Ali, N.A., Al-Jabiri, Y.S., et al. (2023) Knowledge, Attitudes, and Practices (KAP) during the Malaria Elimination Phase: A Household-Based Cross-Sectional Survey. Medicine, 102, e33793.
https://doi.org/10.1097/md.0000000000033793
[13]  Tripathi, R., Makeen, H.A., Albarraq, A.A., Tripathi, P., Meraya, A.M., Mubaraki, A.A., et al. (2019) A Community-Based Survey of Malaria and Its Prevention in Jazan, Saudi Arabia. International Journal of Health Promotion and Education, 58, 28-41.
https://doi.org/10.1080/14635240.2019.1665470
[14]  Gosadi, I.M., Gohal, G.A., Dalak, A.E., Alnami, A.A., Aljabri, N.A. and Zurayyir, A.J. (2021) Assessment of Factors Associated with the Effectiveness of Premarital Screening for Hemoglobinopathies in the South of Saudi Arabia. International Journal of General Medicine, 14, 3079-3086.
https://doi.org/10.2147/ijgm.s321046
[15]  Madkhali, A.M., Al-Mekhlafi, H.M., Atroosh, W.M., Ghzwani, A.H., Zain, K.A., Abdulhaq, A.A., et al. (2020) Increased Prevalence of Pfdhfr and Pfdhps Mutations Associated with Sulfadoxine-Pyrimethamine Resistance in Plasmodium falciparum Isolates from Jazan Region, South-western Saudi Arabia: Important Implications for Malaria Treatment Policy. Malaria Journal, 19, Article No. 446.
https://doi.org/10.1186/s12936-020-03524-x
[16]  (2019) Kingdom of Saudi Arabia Ministry of Health.
https://www.moh.gov.sa/en/Ministry/Statistics/book/Pages/default.aspx
[17]  Wilkerson, R.C., Linton, Y.M. and Strickman, D.A. (2021) Mosquitoes of the World. Johns Hopkins University Press.
[18]  Pecor, D.B., Potter, A.M. and Linton, Y. (2023) Implications of Climate Change and Anopheles Stephensi Liston in Africa: Knowledge Gaps and Lessons from History. Current Tropical Medicine Reports, 10, 320-330.
https://doi.org/10.1007/s40475-023-00296-7
[19]  Al-Eryani, S.M., Irish, S.R., Carter, T.E., Lenhart, A., Aljasari, A., Montoya, L.F., et al. (2023) Public Health Impact of the Spread of Anopheles Stephensi in the WHO Eastern Mediterranean Region Countries in Horn of Africa and Yemen: Need for Integrated Vector Surveillance and Control. Malaria Journal, 22, Article No. 187.
https://doi.org/10.1186/s12936-023-04545-y
[20]  Al Jurebi, M., Behiry A, Attia, O., Alharbi, S., et al. (2023) Plasmodium Falciparum Malaria Retinitis; A Case Study at the Armed Forces Hospital, Jazan. Afro-Egyptian Journal of Infectious and Endemic Diseases, 13-4, 287-291.
[21]  Dablool, A.S. and Hamdoo, A.A.E. (2021) Malaria in Different Regions in the Kingdom of Saudi Arabia during the Year 2018. Life Science Journal, 18, 7-14.
https://www.lifesciencesite.com/lsj/lsj180921/02_37469lsj180921_7_14.pdf
[22]  Amimo, F. (2024) Malaria Transmission Dynamics in East Africa. In: Amoah, L.E., Acquah, F.K. and Asare, K.K., Eds., MalariaTransmission, Diagnosis and Treatment, IntechOpen.
https://www.intechopen.com/chapters/88350
[23]  Siya, A., Kalule, B.J., Ssentongo, B., Lukwa, A.T. and Egeru, A. (2020) Malaria Patterns across Altitudinal Zones of Mount Elgon Following Intensified Control and Prevention Programs in Uganda. BMC Infectious Diseases, 20, Article No. 425.
https://doi.org/10.1186/s12879-020-05158-5
[24]  Amer, O.S., Waly, M.I., Burhan, I.W., Al-Malki, E.S., Smida, A. and Al-Benasy, K.S. (2020) Epidemiological Trends of Malaria in the Western Regions of Saudi Arabia: A Cross Sectional Study. The Journal of Infection in Developing Countries, 14, 1332-1337.
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=
https://jidc.org/index.php/journal/article/download/33296348/2406/119652&ved=2ahUKEwiXmvfHkeKFAxUMfKQEHcCbCd8QFnoECBUQAQ&usg=AOvVaw1-B1OSrIHnTXhEWi_z8oTu
https://doi.org/10.3855/jidc.13246
[25]  Garba, L.C., Houmsou, R.S., Akwa, V.Y., Wama, B.E., Ikpa, F.T., Kela, S.L., et al. (2023) Spatial Features of Malaria in the Lowland and Nearby Highland Areas of Taraba State, Nigeria. Scientific African, 22, e01969.
https://doi.org/10.1016/j.sciaf.2023.e01969
[26]  Hawash, Y., Ismail, K., Alsharif, K. and Alsanie, W. (2019) Malaria Prevalence in a Low Transmission Area, Jazan District of South-western Saudi Arabia. The Korean Journal of Parasitology, 57, 233-242.
https://doi.org/10.3347/kjp.2019.57.3.233
[27]  Larson, P.S., Eisenberg, J.N.S., Berrocal, V.J., Mathanga, D.P. and Wilson, M.L. (2021) An Urban-to-Rural Continuum of Malaria Risk: New Analytic Approaches Characterize Patterns in Malawi. Malaria Journal, 20, Article No. 418.
https://doi.org/10.1186/s12936-021-03950-5
[28]  Alanazi, A., Almusailhi, B.A.H., Bamousa, G.K., Alhawashim, N.H., Alotaibi, N.M., AlShamekh, S., et al. (2022) A Decade of Travel-Associated Malaria at King Fahad Hospital of the University in the Eastern Province of Saudi Arabia. Scientific Reports, 12, Article No. 966.
https://www.nature.com/articles/s41598-022-04996-4
https://doi.org/10.1038/s41598-022-04996-4
[29]  Almutairi, M.M., Alsalem, W.S., Hassanain, M. and Hotez, P.J. (2018) Hajj, Umrah, and the Neglected Tropical Diseases. PLOS Neglected Tropical Diseases, 12, e0006539.
https://doi.org/10.1371/journal.pntd.0006539
[30]  World Malaria Report 2017.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2017
[31]  Abdalal, S.A., Yukich, J., Andrinopoulos, K., Alghanmi, M., Wakid, M.H., Zawawi, A., et al. (2023) Livelihood Activities, Human Mobility, and Risk of Malaria Infection in Elimination Settings: A Case-Control Study. Malaria Journal, 22, Article No. 53.
https://doi.org/10.1186/s12936-023-04470-0
[32]  Shah, H.A., Huxley, P., Elmes, J. and Murray, K.A. (2019) Agricultural Land-Uses Consistently Exacerbate Infectious Disease Risks in Southeast Asia. Nature Communications, 10, Article No. 4299.
https://doi.org/10.1038/s41467-019-12333-z
[33]  Kibret, S., Glenn Wilson, G., Ryder, D., Tekie, H. and Petros, B. (2019) Environmental and Meteorological Factors Linked to Malaria Transmission around Large Dams at Three Ecological Settings in Ethiopia. Malaria Journal, 18, Article No. 54.
https://doi.org/10.1186/s12936-019-2689-y
[34]  Alzahrani, M., McCall, P., Hassan, A., Omar, A. and Abdoon, A. (2017) Impact of Irrigation System on Malaria Transmission in Jazan Region, Saudi Arabia. Open Journal of Tropical Medicine, 1, 7-15.
https://www.researchgate.net/profile/Abdel-Mohsin-Abdoon/publication/318113229_Alzahrani_MH_McCall_P_Hassan_A_Omar_AI_Abdoon_AM_2017_Impact_of_Irrigation_System_on_Malaria_Transmission_in_Jazan_Region_Saudi_Arabia_Open_J_Trop_Med_11_007-015/links/595a62b00f7e9b897eab3af0/Alzahrani-MH-McCall-P-Hassan-A-Omar-AI-Abdoon-AM-2017-Impact-of-Irrigation-System-on-Malaria-Transmission-in-Jazan-Region-Saudi-Arabia-Open-J-Trop-Med-11-007-015.pdf
https://doi.org/10.17352/ojtm.000002
[35]  Ministry of Health (2019) Progress toward Malaria Elimination in the Kingdom of Saudi Arabia: A Success Story.
https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Malaria.pdf
[36]  World Health Organization
https://apps.who.int/gho/data/node.main.MALARIAINDIG?lang=en
[37]  Ministry of Health (2018) National Malaria Drug Policy.
https://www.moh.gov.sa/Ministry/About/Health%20Policies/029.pdf
[38]  World Health Organization (2018) World Malaria Report 2018.
https://iris.who.int/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1
[39]  Alshahrani, A.M., Abdelgader, T.M., Saeed, I., Al-Akhshami, A., Al-Ghamdi, M., Al-Zahrani, M.H., et al. (2016) The Changing Malaria Landscape in Aseer Region, Kingdom of Saudi Arabia: 2000-2015. Malaria Journal, 15, Article No. 538.
https://doi.org/10.1186/s12936-016-1581-2
[40]  Smith, J.L., Auala, J., Haindongo, E., Uusiku, P., Gosling, R., Kleinschmidt, I., et al. (2017) Malaria Risk in Young Male Travellers but Local Transmission Persists: A Case-Control Study in Low Transmission Namibia. Malaria Journal, 16, Article No. 70.
https://doi.org/10.1186/s12936-017-1719-x
[41]  Lynch, C.A., Bruce, J., Bhasin, A., Roper, C., Cox, J. and Abeku, T.A. (2015) Association between Recent Internal Travel and Malaria in Ugandan Highland and Highland Fringe Areas. Tropical Medicine & International Health, 20, 773-780.
https://doi.org/10.1111/tmi.12480
[42]  Arinaitwe, E., Dorsey, G., Nankabirwa, J.I., Kigozi, S.P., Katureebe, A., Kakande, E., et al. (2018) Association between Recent Overnight Travel and Risk of Malaria: A Prospective Cohort Study at 3 Sites in Uganda. Clinical Infectious Diseases, 68, 313-320.
https://academic.oup.com/cid/article/68/2/313/5032708?login=false
https://doi.org/10.1093/cid/ciy478
[43]  Mary, S., Craven, K., Stoler, A. and Shafiq, S. (2023) Revisiting the Impact of Dams on Malaria and Agriculture. Economies, 11, Article 173.
https://www.mdpi.com/2227-7099/11/7/173
https://doi.org/10.3390/economies11070173
[44]  Johansen, I.C., Moran, E.F. and Ferreira, M.U. (2023) The Impact of Hydropower Dam Construction on Malaria Incidence: Space-Time Analysis in the Brazilian Amazon. PLOS Global Public Health, 3, e0001683.
https://doi.org/10.1371/journal.pgph.0001683
[45]  Kitro, A., Ngamprasertchai, T. and Srithanaviboonchai, K. (2022) Infectious Diseases and Predominant Travel-Related Syndromes among Long-Term Expatriates Living in Low-and Middle-Income Countries: A Scoping Review. Tropical Diseases, Travel Medicine and Vaccines, 8, Article No. 11.
https://doi.org/10.1186/s40794-022-00168-4
[46]  Chen, L.H. and Hamer, D.H. (2019) Long-Term Travelers & Expatriates. Centers for Disease Control and Prevention.
https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-for-work-other-reasons/long-term-travelers-and-expatriates
[47]  Chen, L.H., Leder, K., Schlagenhauf, P., Libman, M., Keystone, J., Mendelson, M., et al. (2018) Reply: Regarding Business Travelers. Journal of Travel Medicine, 25, tay031.
https://doi.org/10.1093/jtm/tay031
[48]  Shepherd, S.M. and Shoff, W.H. (2014) Vaccination for the Expatriate and Long-Term Traveler. Expert Review of Vaccines, 13, 775-800.
https://doi.org/10.1586/14760584.2014.913485
[49]  Fonseca, A.G., Dias, S.S., Baptista, J.L. and Torgal, J. (2017) Psychological Well-Being of Portuguese Expatriates in Sub-Saharan Africa: A Cross-Sectional Study. Journal of Travel Medicine, 24, tax061.
https://doi.org/10.1093/jtm/tax061
[50]  EL-Malky, M., Aldosari, M., Elsendiony, A., AL-Harthi, S., Zaghloul, D. and Salah, N. (2016) Imported Malaria to Makkah District, Saudi Arabia: Is There Any Risk of Local Transmission? Journal of the Egyptian Society of Parasitology, 46, 461-465.
https://doi.org/10.21608/jesp.2016.78040
[51]  World Health Organization (2019) Malaria Funding by Source, 2010-2019. WHO Eastern Mediterranean Region.
https://www.emro.who.int/images/stories/rbm/documents/malaria_situation_in_emr_2020.pdf?ua=1
[52]  World Health Organization (2023) World Malaria Report 2023.
https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2023-regional-briefing-kit-eng.pdf
[53]  Gasimov, E. and World Health Organization. (2024) Update on Malaria Elimination, Including Zoonotic Malaria. Malaria Policy Advisory Group Meeting.
https://cdn.who.int/media/docs/default-source/malaria/mpac-documentation/mpag-march2024-session7-elimination-including-zoonotic-malaria.pdf?sfvrsn=ba84c611_3
[54]  El Hassan, I.M., Sahly, A., Alzahrani, M.H., Alhakeem, R.F., Alhelal, M., Alhogail, A., et al. (2015) Progress toward Malaria Elimination in Jazan Province, Kingdom of Saudi Arabia: 2000-2014. Malaria Journal, 14, Article No. 444.
https://doi.org/10.1186/s12936-015-0858-1
[55]  WHO EMRO (2023) World Health Organization—Regional Office for the Eastern Mediterranean.
https://www.emro.who.int/malaria/strategy/
[56]  Khairy, S., Al-Surimi, K., Ali, A., Shubily, H.M., Al Walaan, N., Househ, M., et al. (2017) Knowledge, Attitude and Practice about Malaria in South-Western Saudi Arabia: A Household-Based Cross-Sectional Survey. Journal of Infection and Public Health, 10, 499-506.
https://doi.org/10.1016/j.jiph.2016.09.021
[57]  Coleman, M., Al-Zahrani, M.H., Coleman, M., Hemingway, J., Omar, A., Stanton, M.C., et al. (2014) A Country on the Verge of Malaria Elimination—The Kingdom of Saudi Arabia. PLOS ONE, 9, e105980.
https://doi.org/10.1371/journal.pone.0105980
[58]  Fornadel, C.M. and Norris, D.E. (2008) Increased Endophily by the Malaria Vector Anopheles arabiensis in Southern Zambia and Identification of Digested Blood Meals. The American Journal of Tropical Medicine and Hygiene, 79, 876-880.
https://doi.org/10.4269/ajtmh.2008.79.876
[59]  Tirados, I., Costantini, C., Gibson, G. and Torr, S.J. (2006) Blood‐Feeding Behaviour of the Malarial MosquitoAnopheles arabiensis: Implications for Vector Control. Medical and Veterinary Entomology, 20, 425-437.
https://doi.org/10.1111/j.1365-2915.2006.652.x
[60]  Githeko, A.K., Service, M.W., Mbogo, C.M., Atieli, F.K. and Juma, F.O. (1994) Origin of Blood Meals in Indoor and Outdoor Resting Malaria Vectors in Western Kenya. Acta Tropica, 58, 307-316.
https://doi.org/10.1016/0001-706x(94)90024-8
[61]  Kulkarni, M.A., Kweka, E., Nyale, E., Lyatuu, E., Mosha, F.W., Chandramohan, D., et al. (2006) Entomological Evaluation of Malaria Vectors at Different Altitudes in Hai District, Northeastern Tanzania. Journal of Medical Entomology, 43, 580-588.
https://doi.org/10.1093/jmedent/43.3.580
[62]  Mahande, A., Mosha, F., Mahande, J. and Kweka, E. (2007) Feeding and Resting Behaviour of Malaria Vector, Anopheles arabiensis with Reference to Zooprophylaxis. Malaria Journal, 6, Article No. 100.
https://doi.org/10.1186/1475-2875-6-100
[63]  Habtewold, T., Prior, A., Torr, S.J. and Gibson, G. (2004) Could Insecticide‐Treated Cattle Reduce Afrotropical Malaria Transmission? Effects of Deltamethrin‐Treated Zebu on Anopheles arabiensis Behaviour and Survival in Ethiopia. Medical and Veterinary Entomology, 18, 408-417.
https://doi.org/10.1111/j.0269-283x.2004.00525.x
[64]  Pates, H.V. (2002) Zoophilic and Anthropophilic Behaviour in the Anopheles Gambiae Complex. Ph.D. Thesis, London School of Hygiene & Tropical Medicine.
[65]  Programme, G.M. (2023) WHO Initiative to Stop the Spread of Anopheles Stephensi in Africa.
https://www.who.int/publications/i/item/WHO-UCN-GMP-2022.06
[66]  World Health Organization (2021) WHO Malaria Terminology.
[67]  Yukich, J.O., Lindblade, K. and Kolaczinski, J. (2022) Receptivity to Malaria: Meaning and Measurement. Malaria Journal, 21, Article No. 145.
https://doi.org/10.1186/s12936-022-04155-0
[68]  Khater, E.I., Sowilem, M.M., Sallam, M.F., Alahmed, A.M. (2013) Ecology and Habitat Characterization of Mosquitoes in Saudi Arabia. Tropical Biomedicine, 30, 409-427.
[69]  Gillies, M.T. and Coetzee, M. (1987) A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). South African Institute for Medical Research.
[70]  WHO (2004) Integrated Vector Management Strategic Framework for the Eastern Mediterranean Region 2004-2010. World Health Organization, Regional Office for the Eastern Mediterranean.
[71]  WHO (2011) World Malaria Report 2011. World Health Organization.
[72]  Abdoon, A.M.M.O. and Al Shahrani, A.M. (2021) Prevalence and Distribution of Anopheline Mosquitoes in Malaria Endemic Areas of Asir Region, Saudi Arabia. Eastern Mediterranean Health Journal, 9, 240-247.
https://doi.org/10.26719/2003.9.3.240
[73]  Abdullah, M.A. and Merdan, A.I. (1995) Distribution and Ecology of the Mosquito Fauna in the South-western Saudi Arabia. Journal of the Egyptian Society of Parasitology, 25, 815-837.
[74]  Al-Ghamdi, K., Alikhan, M., Mahyoub, J. and Afifi, Z.I. (2008) Studies on Identification and Population Dynamics of Anopheline Mosquitoes from Jeddah Province of Saudi Arabia. Bioscience Biotechnology Research Communications, 1, 19-24.
[75]  Al-Ahmed, A.M., Al-Kuriji, M.A., Kheir, S.M. and Al-Zahrni, A.A. (2012) Distribution and Seasonal Abundance of Different Mosquito Species (Diptera: Culicidae) in Al Bahah Region, Saudi Arabia. Arab Gulf Journal of Scientific Research, 28, 67-78.
https://www.cabidigitallibrary.org/doi/full/10.5555/20123140842
[76]  Alahmed, A.M. (2012) Mosquito Fauna (Diptera: Culicidae) of the Eastern Region of Saudi Arabia and Their Seasonal Abundance. Journal of King Saud UniversityScience, 24, 55-62.
https://www.sciencedirect.com/science/article/pii/S1018364710001552
https://doi.org/10.1016/j.jksus.2010.12.001
[77]  Camara, S., Koffi, A.A., Ahoua Alou, L.P., Koffi, K., Kabran, J.K., Koné, A., et al. (2018) Mapping Insecticide Resistance in Anopheles gambiae (s.l.) from Côte d’Ivoire. Parasites & Vectors, 11, Article No. 19.
https://pubmed.ncbi.nlm.nih.gov/29310704/
https://doi.org/10.1186/s13071-017-2546-1
[78]  Awolola, T.S., Oyewole, I.O., Amajoh, C.N., Idowu, E.T., Ajayi, M.B., Oduola, A., et al. (2005) Distribution of the Molecular Forms of Anopheles Gambiae and Pyrethroid Knock down Resistance Gene in Nigeria. Acta Tropica, 95, 204-209.
https://pubmed.ncbi.nlm.nih.gov/16023989/
https://doi.org/10.1016/j.actatropica.2005.06.002
[79]  Dabiré, R.K., Namountougou, M., Diabaté, A., Soma, D.D., Bado, J., Toé, H.K., et al. (2014) Distribution and Frequency of kdr Mutations within Anopheles gambiae s.l. Populations and First Report of the Ace.1G119S Mutation in Anopheles Arabiensis from Burkina Faso (West Africa). PLOS ONE, 9, e101484.
https://doi.org/10.1371/journal.pone.0101484
[80]  Ochomo, E., Subramaniam, K., Kemei, B., Rippon, E., Bayoh, N.M., Kamau, L., et al. (2015) Presence of the Knockdown Resistance Mutation, Vgsc-1014F in Anopheles gambiae and An. Arabiensis in Western Kenya. Parasites & Vectors, 8, Article No. 616.
https://doi.org/10.1186/s13071-015-1223-5
[81]  Djègbè, I., Akoton, R., Tchigossou, G.M., Ahadji-Dabla, K.M., Atoyebi, S.M., Adéoti, R., et al. (2018) First Report of the Presence of L1014S Knockdown-Resistance Mutation in Anopheles gambiae s.s and Anopheles coluzzii from Togo, West Africa. Wellcome Open Research, 3, Article 30.
https://pubmed.ncbi.nlm.nih.gov/29707654/
https://doi.org/10.12688/wellcomeopenres.13888.1
[82]  Vatandoost, H., Hanafi-Bojd, A.A., Nikpoor, F., Raeisi, A., Abai, M.R. and Zaim, M. (2022) Situation of Insecticide Resistance in Malaria Vectors in the World Health Organization of Eastern Mediterranean Region 1990-2020. Toxicology Research, 11, 1-21.
https://doi.org/10.1093/toxres/tfab126
[83]  Vatandoost, H., Nikpour, F., Hanafi-Bojd, A.A., Abai, M.R., Khanavi, M., Hajiiakhondi, A., et al. (2020) Efficacy of Extractions of Iranian Native Plants against Main Malaria Vector, Anopheles stephensi in Iran for Making Appropriate Formulation for Disease Control. Journal of Arthropod-Borne Diseases, 13, 344-352.
https://jad.tums.ac.ir/index.php/jad/article/view/1195
https://doi.org/10.18502/jad.v13i4.2230
[84]  Davari, B., Vatandoost, H., Ladonni, H., et al. (2006) Comparative Efficacy of Different Imagicides against Different Strains of Anopheles Stephensi in the Malarious Areas of Iran, 2004-2005. Pakistan Journal of Biological Sciences, 9, 885-892.
https://scialert.net/abstract/?doi=pjbs.2006.885.892
https://doi.org/10.3923/pjbs.2006.885.892
[85]  Hanafi-Bojd, A.A., Vatandoost, H. and Jafari, R. (2006) Susceptibility Status of Anopheles dthali and An. Fluviatilis to Commonly Used Larvicides in an Endemic Focus of Malaria, Southern Iran. Journal of Vector Borne Diseases, 43, 34-38.
https://pubmed.ncbi.nlm.nih.gov/16642784/
[86]  Zoh, D.D., Ahoua Alou, L.P., Toure, M., Pennetier, C., Camara, S., Traore, D.F., et al. (2018) The Current Insecticide Resistance Status of Anopheles gambiae (s.l.) (Culicidae) in Rural and Urban Areas of Bouaké, Côte D’ivoire. Parasites & Vectors, 11, Article No. 118.
https://doi.org/10.1186/s13071-018-2702-2
[87]  Davari, B., Vatandoost, H., Oshaghi, M.A., Ladonni, H., Enayati, A.A., Shaeghi, M., et al. (2007) Selection of Anopheles stephensi with DDT and Dieldrin and Cross-Resistance Spectrum to Pyrethroids and Fipronil. Pesticide Biochemistry and Physiology, 89, 97-103.
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19061186
https://doi.org/10.1016/j.pestbp.2007.04.003
[88]  Abai, M.R., Mehravaran, A., Vatandoost, H., et al. (2008) Comparative Performance of Imagicides on Anopheles stephensi, Main Malaria Vector in a Malarious Area, Southern Iran. Journal of Vector Borne Diseases, 45, 307-312.
https://pubmed.ncbi.nlm.nih.gov/19248658/
[89]  Hasasan, V. and Hossein, Z.A. (2010) Responsiveness of Anopheles maculipennis to Different Imagicides during Resurgent Malaria. Asian Pacific Journal of Tropical Medicine, 3, 360-363.
https://doi.org/10.1016/s1995-7645(10)60087-9
[90]  Vatandoost, H. and Hanafi-Bojd, A.A. (2012) Indication of Pyrethroid Resistance in the Main Malaria Vector, Anopheles stephensi from Iran. Asian Pacific Journal of Tropical Medicine, 5, 722-726.
https://doi.org/10.1016/s1995-7645(12)60114-x
[91]  Soltani, A., Vatandoost, H., Oshaghi, M.A., et al. (2013) Baseline Susceptibility of Different Geographical Strains of Anopheles stephensi (Diptera: Culicidae) to Temephos in Malarious Areas of Iran. Journal of Arthropod-Borne Diseases, 7, 56-65.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684497/
[92]  Lak, S.S., Vatandoost, H., Entezarmahdi, M., et al. (2002) Monitoring of Insecticide Resistance in Anopheles sacharovi (Favre, 1903) in Borderline of Iran, Armenia, Naxcivan and Turkey, 2001. Iranian Journal of Public Health, 31, 96-99.
https://www.sid.ir/en/journal/ViewPaper.aspx?id=33590
[93]  Enayati, A.A., Vatandoost, H., Ladonni, H., Townson, H. and Hemingway, J. (2003) Molecular Evidence for a Kdr‐Like Pyrethroid Resistance Mechanism in the Malaria Vector Mosquito Anopheles stephensi. Medical and Veterinary Entomology, 17, 138-144.
https://doi.org/10.1046/j.1365-2915.2003.00418.x
[94]  Soltani, A., Vatandoost, H., Jabbari, H., et al. (2008) Use of Expanded Polystyrene (EPS) and Shredded Waste Polystyrene (SWAP) Beads for Control of Mosquitoes. Journal of Arthropod-Borne Diseases, 2, 12-20.
https://jad.tums.ac.ir/index.php/jad/article/view/33
[95]  Omrani, S.M., Vatandoost, H., Oshaghi, M.A., et al. (2010) Fabrication of an Olfactometer for Mosquito Behavioral Studies. Journal of Vector Borne Diseases, 47, 17-25.
https://pubmed.ncbi.nlm.nih.gov/20231769/
[96]  Omrani, S.M., Vatandoost, H., Oshaghi, M., et al. (2010) Differential Responses of Anopheles stephensi (Diptera: Culicidae) to Skin Emanations of a Man, a Cow, and a Guinea Pig in the Olfactometer. Iranian Journal of Arthropod-Borne Diseases, 4, 1-16.
https://pubmed.ncbi.nlm.nih.gov/22808383/
[97]  Omrani, S., Vatandoost, H., Oshaghi, M.A. and Rahimi, A. (2012) Upwind Responses of Anopheles stephensi to Carbon Dioxide and L-Lactic Acid: An Olfactometer Study. Eastern Mediterranean Health Journal, 18, 1134-1142.
https://pubmed.ncbi.nlm.nih.gov/23301376/
https://doi.org/10.26719/2012.18.11.1134
[98]  Koffi, A.A., Ahoua Alou, L.P., Kabran, J.K., N’Guessan, R. and Pennetier, C. (2013) Re-Visiting Insecticide Resistance Status in Anopheles Gambiae from Côte d’Ivoire: A Nation-Wide Informative Survey. PLOS ONE, 8, e82387.
https://pubmed.ncbi.nlm.nih.gov/24358177/
https://doi.org/10.1371/journal.pone.0082387
[99]  N’Guessan, R., Corbel, V., Akogbéto, M. and Rowland, M. (2007) Reduced Efficacy of Insecticide-Treated Nets and Indoor Residual Spraying for Malaria Control in Pyrethroid Resistance Area, Benin. Emerging Infectious Diseases, 13, 199-206.
https://pubmed.ncbi.nlm.nih.gov/17479880/
https://doi.org/10.3201/eid1302.060631
[100]  Strode, C., Donegan, S., Garner, P., Enayati, A.A. and Hemingway, J. (2014) The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis. PLOS Medicine, 11, e1001619.
https://pubmed.ncbi.nlm.nih.gov/24642791/
https://doi.org/10.1371/journal.pmed.1001619
[101]  Churcher, T.S., Lissenden, N., Griffin, J.T., Worrall, E. and Ranson, H. (2016) The Impact of Pyrethroid Resistance on the Efficacy and Effectiveness of Bednets for Malaria Control in Africa. ELife, 5, e16090.
https://pubmed.ncbi.nlm.nih.gov/27547988/
https://doi.org/10.7554/elife.16090
[102]  Chandre, F., Manguin, S., Brengues, C., Dossou Yovo, J., Darriet, F., Diabate, A., et al. (1999) Current Distribution of a Pyrethroid Resistance Gene (kdr) in Anopheles gambiae Complex from West Africa and Further Evidence for Reproductive Isolation of the Mopti Form. Parassitologia, 41, 319-322.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133