全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Resistance Status of Various Populations of Anopheles gambiae s.l. to Insecticides and Resistance Mechanisms Involved in Different Crop Zones of Benin (West Africa)

DOI: 10.4236/aid.2025.152017, PP. 214-228

Keywords: Anopheles gambiae s.l., Benin, Resistance, Insecticide, Growing Areas, Gene

Full-Text   Cite this paper   Add to My Lib

Abstract:

The resistance of An. gambiae s.l. to pyrethroids remains a major concern. The development and use of alternative insecticides seems to be the solution. At the same time, monitoring of the susceptibility of these mosquitoes to insecticides needs to be stepped up. The aim of the present study is to investigate the resistance status of various Anopheles gambiae s.l. populations to insecticides and the resistance mechanisms involved. Ten localities, divided into four growing zones, were studied in Benin. Larval surveys were carried out during the 2021-2023 rainy seasons. Larvae were reared at the insectarium of the Centre de Recherche Entomologique in Cotonou. Adult females aged 2 - 5 days were morphologically identified and subjected to 4 insecticides including pirimiphos-methyl 0.5%, bendiocarb 0.01%, deltamethrin 0.05% and alphacypermethrin 0.05%; and the impact of pre-exposure to PBO measured in accordance with WHO protocols. L1014F and G119S mutations in the Kdr and Ace1 genes were determined by PCR. Pyrethroid mortality rates ranged from 2.88% to 39.19% for An. gambiae s.l. populations in all growing areas. Pre-exposure to PBO increased pyrethroid mortality. The results also show phenotypic resistance to bendiocarb in the lagoon zone and suspected resistance in the cereal, cotton and rice-growing zones. As for pirimiphos methyl, we noted sensitivity in the cotton zone, suspected resistance in the rice zone and resistance in the cereal and lagoon zones of the different Anopheles gambiae s.l. populations. A significant difference was observed in the distribution of L1014F, which ranged from 76.58% to 82.33% in our crop zones, while no significant difference was observed in the distribution of G119S, which ranged from 3.52% to 4.86%. The resistance of An. gambiae s.l. to pirimiphos-methyl, bendiocarb, deltamethrin and alphacypermethrin, as well as the relatively high frequency of the kdr mutation, call for the development and implementation of measures for effective insecticide resistance management.

References

[1]  Collins, F.H. and Paskewitz, S.M. (1995) Malaria: Current and Future Prospects for Control. Annual Review of Entomology, 40, 195-219.
https://doi.org/10.1146/annurev.en.40.010195.001211
[2]  Fanello, C., Petrarca, V., Della Torre, A., Santolamazza, F., Dolo, G., Coulibaly, M., et al. (2003) The Pyrethroid Knock-Down Resistance Gene in the Anopheles gambiae Complex in Mali and Further Indication of Incipient Speciation within An. gambiae s.s. Insect Molecular Biology, 12, 241-245.
https://doi.org/10.1046/j.1365-2583.2003.00407.x
[3]  World Health Organization (2023) World Malaria Report 2023.
[4]  Ministère de la santé du Bénin (2019) Annuaire des statistiques sanitaires 2018. Ministère de la santé du Bénin.
[5]  Akogbéto, M.C., Aïkpon, R.Y., Azondékon, R., Padonou, G.G., Ossè, R.A., Agossa, F.R., et al. (2015) Six Years of Experience in Entomological Surveillance of Indoor Residual Spraying against Malaria Transmission in Benin: Lessons Learned, Challenges and Outlooks. Malaria Journal, 14, Article No. 242.
https://doi.org/10.1186/s12936-015-0757-5
[6]  Barnabas, Z.M. (2019) Impact entomologique de stratégies complémentaires de lutte intégrée contre le paludisme dans un contexte de résistance des vecteurs aux insecticides au nord de la Côte d’Ivoire. PhD Thesis, Université Montpellier Université d’Abomey-Calavi (Bénin).
https://theses.hal.science/tel-02485637
[7]  Ranson, H., N’Guessan, R., Lines, J., Moiroux, N., Nkuni, Z. and Corbel, V. (2011) Pyrethroid Resistance in African Anopheline Mosquitoes: What Are the Implications for Malaria Control? Trends in Parasitology, 27, 91-98.
https://doi.org/10.1016/j.pt.2010.08.004
[8]  Bimenya, G.S., Harabulema, M., Okot, J.P., Francis, O., Lugemwa, M. and Okwi, A.L. (2010) Plasma Levels of DDT/DDE and Liver Function in Malaria Control Personnel 6 Months after Indoor Residual Spraying with DDT in Northern Uganda, 2008. South African Medical Journal, 100, Article No. 118.
https://doi.org/10.7196/samj.3321
[9]  Fassinou, A.J.Y.H., Koukpo, C.Z., Ossè, R.A., Agossa, F.R., Azondékon, R., Sominahouin, A., et al. (2019) Pesticides and the Evolution of the Genetic Structure of Anopheles coluzzii Populations in Some Localities in Benin (West Africa). Malaria Journal, 18, Article No. 407.
https://doi.org/10.1186/s12936-019-3036-z
[10]  Koukpo, C.Z., Fassinou, A.J.Y.H., Ossè, R.A., Agossa, F.R., Sovi, A., Sewadé, W.T., et al. (2019) The Current Distribution and Characterization of the L1014F Resistance Allele of the Kdr Gene in Three Malaria Vectors (Anopheles gambiae, Anopheles coluzzii, Anopheles arabiensis) in Benin (West Africa). Malaria Journal, 18, Article No. 175.
https://doi.org/10.1186/s12936-019-2808-9
[11]  Diabate, A., Baldet, T., Chandre, F., Akoobeto, M., Guiguemde, T.R., Darriet, F., et al. (2002) The Role of Agricultural Use of Insecticides in Resistance to Pyrethroids in Anopheles gambiae s.l. in Burkina Faso. The American Journal of Tropical Medicine and Hygiene, 67, 617-622.
https://doi.org/10.4269/ajtmh.2002.67.617
[12]  Akogbéto, M.C., Djouaka, R.F. and Kindé-Gazard, D.A. (2006) Screening of Pesticide Residues in Soil and Water Samples from Agricultural Settings. Malaria Journal, 5, Article No. 22.
https://doi.org/10.1186/1475-2875-5-22
[13]  Yadouléton, A., N’Guessan, R., Allagbé, H., Asidi, A., Boko, M., Osse, R., et al. (2010) The Impact of the Expansion of Urban Vegetable Farming on Malaria Transmission in Major Cities of Benin. Parasites & Vectors, 3, Article No. 118.
https://doi.org/10.1186/1756-3305-3-118
[14]  Ton, J., Davison, S., Van Wees, S.C.M., Van Loon, L.C. and Pieterse, C.M.J. (2001) The Arabidopsis isr1 Locus Controlling Rhizobacteria-Mediated Induced Systemic Resistance Is Involved in Ethylene Signaling. Plant Physiology, 125, 652-661.
https://doi.org/10.1104/pp.125.2.652
[15]  Divelya, G.P., Venugopala, P.D., Beanb, D., Whalenc, J., Holmstromd, C., Kuhare, T.P., Doughtyf, H.B., Pattona, T., Cisselc, W. and Hutchison, W.D. (2018) Regional Pest Suppression Associated with Widespread BT Maize Adoption Benefits Vegetable Growers.
[16]  Blann, K.L., Anderson, J.L., Sands, G.R. and Vondracek, B. (2009) Effects of Agricultural Drainage on Aquatic Ecosystems: A Review. Critical Reviews in Environmental Science and Technology, 39, 909-1001.
https://doi.org/10.1080/10643380801977966
[17]  Abdoulaye Alfa, D., Gbofan, N.F., Mongbo, R. and Egrot, M. (2018) Filets imprégnés d’insecticides utilisés dans l’activité de maraîchage au Bénin: Une innovation de santé par dérivation et par procuration. In: Linnovation en santé, Presses universitaires de Rennes, 115-131.
https://doi.org/10.4000/books.pur.149817
[18]  Hemingway, J., Hawkes, N.J., McCarroll, L. and Ranson, H. (2004) The Molecular Basis of Insecticide Resistance in Mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653-665.
https://doi.org/10.1016/j.ibmb.2004.03.018
[19]  Adam, K.S. and Boko, M. (1993) Le Bénin. Nouvelle édition mise à jour. Editions du Flamboyant, EDICEF, 95.
[20]  Agbohessi, T.P., Imorou Toko, I. and Kestemont, P. (2012) Current Status of the Contamination of Aquatic Ecosystems by Organochlorine Pesticides in the Cotton Basin of Benin. Cahiers Agricultures, 21, 46-56.
https://doi.org/10.1684/agr.2012.0535
[21]  Service, M.W. (1993) Mosquitoes (Culicidae). In: Lane, R.P. and Crosskey, R.W., Eds., Medical Insects and Arachnids, Springer, 120-240.
https://doi.org/10.1007/978-94-011-1554-4_5
[22]  Gillies, M.T. and De Meillon, D. (1968) The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Publications of the South African Institute for Medical Research, Vol. 54, 1-343.
[23]  Gillies, M.T. and Coetzee, M.A. (1987) Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Publications of the South African Institute for Medical Research, 55.
[24]  WHO (1998) World Malaria Report 1997.
http://www.who.int/iris/handle/10665/275867
[25]  WHO (2017) World Malaria Report 2017.
https://iris.who.int/bitstream/handle/10665/255336/9789241565486-eng.pdf?sequence=1
[26]  Brogdon, W.G. and Barber, A.M. (1990) Microplate Assay of Glutathione S-Transferase Activity for Resistance Detection in Single-Mosquito Triturates. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 96, 339-342.
https://doi.org/10.1016/0305-0491(90)90385-7
[27]  Theeraphap, C., Akratanakul, P., Nettanomsak, S. and Huntamai, S. (2003) Larval Habitats and Distribution Patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 34, 529-535.
[28]  Martinez-Torres, D., Chandre, F., Williamson, M.S., Darriet, F., Bergé, J.B., Devonshire, A.L., et al. (1998) Molecular Characterization of Pyrethroid Knockdown Resistance (KDR) in the Major Malaria Vector Anopheles gambiae s.s. Insect Molecular Biology, 7, 179-184.
https://doi.org/10.1046/j.1365-2583.1998.72062.x
[29]  Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., et al. (2004) The Unique Mutation in ace-1 Giving High Insecticide Resistance Is Easily Detectable in Mosquito Vectors. Insect Molecular Biology, 13, 1-7.
https://doi.org/10.1111/j.1365-2583.2004.00452.x
[30]  R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
https://www.R-project.org/
[31]  Akogbéto, M. and Yakoubou, A.W. (1999) Résistance des vecteurs du paludisme vis-àvis des pyréthrinoïdes utilisés pour l’imprégnation des moustiquaires au Benin, Afrique de l’Ouest. Bulletin de la Societe de Pathologie Exotique, 92, 123-130.
[32]  Sagbohan, H.W., Kpanou, C.D., Sovi, A., Osse, R., Sidick, A., Adoha, C. and Boulais Yovogan, B. (2022) Pyrethroid Resistance Intensity in Anopheles gambiae s.l. from Different Agricultural Production Zones in Benin, West Africa. Vector-Borne and Zoonotic Diseases, 22, 3947.
https://doi.org/10.1089/vbz.2021.0066.
[33]  Orondo, P.W., Nyanjom, S.G., Atieli, H., Githure, J., Ondeto, B.M., Ochwedo, K.O., et al. (2021) Insecticide Resistance Status of Anopheles arabiensis in Irrigated and Non-Irrigated Areas in Western Kenya. Parasites & Vectors, 14, Article No. 335.
https://doi.org/10.1186/s13071-021-04833-z
[34]  Kouadio, F.A., Wipf, N.C., Nygble, A.S., Fodjo, B.K., Sadia, C.G., Vontas, J., et al. (2023) Relationship between Insecticide Resistance Profiles in Anopheles gambiae Sensu Lato and Agricultural Practices in Côte D’ivoire. Parasites & Vectors, 16, Article No. 270.
https://doi.org/10.1186/s13071-023-05876-0
[35]  Gnankiné, O., Bassolé, I.H.N., Chandre, F., Glitho, I., Akogbeto, M., Dabiré, R.K., et al. (2013) Insecticide Resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) Could Compromise the Sustainability of Malaria Vector Control Strategies in West Africa. Acta Tropica, 128, 7-17.
https://doi.org/10.1016/j.actatropica.2013.06.004
[36]  Houndété, T.A., Kétoh, G.K., Hema, O.S., Brévault, T., Glitho, I.A. and Martin, T. (2010) Insecticide Resistance in Field Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Management Science, 66, 1181-1185.
https://doi.org/10.1002/ps.2008
[37]  Salako, A.S., Ahogni, I., Aïkpon, R., Sidick, A., Dagnon, F., Sovi, A., et al. (2018) Insecticide Resistance Status, Frequency of L1014F Kdr and G119S Ace-1 Mutations, and Expression of Detoxification Enzymes in Anopheles gambiae (s.l.) in Two Regions of Northern Benin in Preparation for Indoor Residual Spraying. Parasites & Vectors, 11, Article No. 618.
https://doi.org/10.1186/s13071-018-3180-2
[38]  Gnanguenon, V., Agossa, F.R., Badirou, K., Govoetchan, R., Anagonou, R., Oke-Agbo, F., et al. (2015) Malaria Vectors Resistance to Insecticides in Benin: Current Trends and Mechanisms Involved. Parasites & Vectors, 8, Article No. 223.
https://doi.org/10.1186/s13071-015-0833-2
[39]  Ahouangninou, C., Fayomi, B.E. and Martin, T. (2011) Assessing Health and Environmental Risks as Regards Pesticide Practices of Vegetable Growers in the Rural City of Tori-Bossito in Southern Benin. Cahiers Agricultures, 20, 216-222.
https://doi.org/10.1684/agr.2011.0485

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133