全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Derivation and Fits of Fermion Masses from the Higgs Sector

DOI: 10.4236/jmp.2025.164033, PP. 613-626

Keywords: Higgs Fields, Quantum Field Theory, Fermion Masses

Full-Text   Cite this paper   Add to My Lib

Abstract:

The masses of the fundamental fermions are fit using properties of the minimal Higgs sector of the standard model and also using insights from an anomaly-free quantum field theory (QFT) with permutational symmetry. With this approach, three generations for each family of fermions arise due to the quartic potential of the Higgs fields and the details of their coupling to ghosts and gauge functions. A similar procedure allows calculation of the mass parameters including the hop amplitudes of the mass matrices of the QFT with permutational symmetry. With both approaches there are two free parameters per family to fit the masses. The latter QFT and the Higgs-based approach lead to related physical interpretations. This paper further reinforces the notion that fundamental fermions are composite particles, comprising “preons” within the minimal Higgs sector.

References

[1]  Weinberg, S. (1967) A Model of Leptons. Physical Review Letters, 19, 1264-1266.
https://doi.org/10.1103/physrevlett.19.1264
[2]  Taylor, J.C. (1976) Gauge Theories of Weak Interactions. Cambridge University Press.
[3]  Weinberg, S. (1996). The Quantum Theory of Fields. Vol. 2, Cambridge University Press.
https://doi.org/10.1017/cbo9781139644174
[4]  Peskin, M. and Schroeder, D. (1995) Introduction to Quantum Field Theory. Perseus.
https://doi.org/10.1201/9780429503559
[5]  Holmes, R.B. (2025) Analysis and Reinterpretation of the Minimal Higgs Sector. Journal of Modern Physics.
[6]  Holmes, R. (2021) A Quantum Field Theory with Permutational Symmetry. 2nd Edition, Lambert Academic Press.
https://doi.org/10.5281/zenodo.5047237
[7]  Navas, S., Amsler, C., Gutsche, T., Hanhart, C., Hernández-Rey, J.J., Lourenço, C., et al. (2024) Review of Particle Physics. Physical Review D, 110, Article ID: 030001.
https://doi.org/10.1103/physrevd.110.030001
[8]  Thomson, M. (2013) Modern Particle Physics. Cambridge University Press.
https://doi.org/10.1017/cbo9781139525367
[9]  Harari, H. (1979) A Schematic Model of Quarks and Leptons. Physics Letters B, 86, 83-86.
https://doi.org/10.1016/0370-2693(79)90626-9
[10]  Harari, H. and Seiberg, N. (1982) The Rishon Model. Nuclear Physics B, 204, 141-167.
https://doi.org/10.1016/0550-3213(82)90426-6
[11]  Shupe, M.A. (1979) A Composite Model of Leptons and Quarks. Physics Letters B, 86, 87-92.
https://doi.org/10.1016/0370-2693(79)90627-0
[12]  Robson, B.A. (2024) The Generation Model of Particle Physics. European Journal of Applied Sciences, 12, 1-17.
https://doi.org/10.14738/aivp.123.16922
[13]  Raitio, R. (2018) Supersymmetric Preons and the Standard Model. Nuclear Physics B, 931, 283-290.
https://doi.org/10.1016/j.nuclphysb.2018.04.021
[14]  Shen, Y.R. and Bloembergen, N. (1965) Theory of Stimulated Brillouin and Raman Scattering. Physical Review, 137, A1787-A1805.
https://doi.org/10.1103/physrev.137.a1787
[15]  Holmes, R. and Flusberg, A. (1988) Rotationally Invariant Theory of Stimulated Raman Scattering. Physical Review A, 37, 1588-1596.
https://doi.org/10.1103/physreva.37.1588
[16]  Evans, N. (1995) Fermion Mass Predictions in a Generalized Extended Technicolor Scenario. Physical Review D, 51, 1377-1385.
https://doi.org/10.1103/physrevd.51.1377
[17]  Ross, G.G. (1995) Fermion Mass Prediction from Infra-Red Fixed Points. Physics Letters B, 364, 216-226.
https://doi.org/10.1016/0370-2693(95)01052-1
[18]  Hernandez-Galeana, A. (2011) Predictions for Fermion Masses and Mixing from a Low Energy SU(3) Flavor Symmetry Model with a Light Sterile Neutrino.
https://doi.org/10.48550/arXiv.1111.7286
[19]  Towe, J. (2013) On Approximating Fermion Masses in Terms of Stationary Super-String States. Journal of Modern Physics, 4, 551-554.
https://doi.org/10.4236/jmp.2013.44076
[20]  Mongan, T.R. (2024) Standard Model Fermion Masses and Charges from Holographic Analysis. Journal of Modern Physics, 15, 796-803.
https://doi.org/10.4236/jmp.2024.156035
[21]  Sirunyan, A.M., Tumasyan, A., Adam, W., Bergauer, T., Dragicevic, M., Erö, J., et al. (2021) Evidence for Higgs Boson Decay to a Pair of Muons. Journal of High Energy Physics, 2021, Article No. 148.
https://doi.org/10.1007/jhep01(2021)148

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133