The masses of the fundamental fermions are fit using properties of the minimal Higgs sector of the standard model and also using insights from an anomaly-free quantum field theory (QFT) with permutational symmetry. With this approach, three generations for each family of fermions arise due to the quartic potential of the Higgs fields and the details of their coupling to ghosts and gauge functions. A similar procedure allows calculation of the mass parameters including the hop amplitudes of the mass matrices of the QFT with permutational symmetry. With both approaches there are two free parameters per family to fit the masses. The latter QFT and the Higgs-based approach lead to related physical interpretations. This paper further reinforces the notion that fundamental fermions are composite particles, comprising “preons” within the minimal Higgs sector.
References
[1]
Weinberg, S. (1967) A Model of Leptons. PhysicalReviewLetters, 19, 1264-1266. https://doi.org/10.1103/physrevlett.19.1264
[2]
Taylor, J.C. (1976) Gauge Theories of Weak Interactions. Cambridge University Press.
[3]
Weinberg, S. (1996). The Quantum Theory of Fields. Vol. 2, Cambridge University Press. https://doi.org/10.1017/cbo9781139644174
[4]
Peskin, M. and Schroeder, D. (1995) Introduction to Quantum Field Theory. Perseus. https://doi.org/10.1201/9780429503559
[5]
Holmes, R.B. (2025) Analysis and Reinterpretation of the Minimal Higgs Sector. JournalofModernPhysics.
[6]
Holmes, R. (2021) A Quantum Field Theory with Permutational Symmetry. 2nd Edition, Lambert Academic Press. https://doi.org/10.5281/zenodo.5047237
Thomson, M. (2013) Modern Particle Physics. Cambridge University Press. https://doi.org/10.1017/cbo9781139525367
[9]
Harari, H. (1979) A Schematic Model of Quarks and Leptons. PhysicsLettersB, 86, 83-86. https://doi.org/10.1016/0370-2693(79)90626-9
[10]
Harari, H. and Seiberg, N. (1982) The Rishon Model. NuclearPhysicsB, 204, 141-167. https://doi.org/10.1016/0550-3213(82)90426-6
[11]
Shupe, M.A. (1979) A Composite Model of Leptons and Quarks. PhysicsLettersB, 86, 87-92. https://doi.org/10.1016/0370-2693(79)90627-0
[12]
Robson, B.A. (2024) The Generation Model of Particle Physics. European Journal of Applied Sciences, 12, 1-17. https://doi.org/10.14738/aivp.123.16922
[13]
Raitio, R. (2018) Supersymmetric Preons and the Standard Model. NuclearPhysicsB, 931, 283-290. https://doi.org/10.1016/j.nuclphysb.2018.04.021
[14]
Shen, Y.R. and Bloembergen, N. (1965) Theory of Stimulated Brillouin and Raman Scattering. PhysicalReview, 137, A1787-A1805. https://doi.org/10.1103/physrev.137.a1787
[15]
Holmes, R. and Flusberg, A. (1988) Rotationally Invariant Theory of Stimulated Raman Scattering. PhysicalReviewA, 37, 1588-1596. https://doi.org/10.1103/physreva.37.1588
[16]
Evans, N. (1995) Fermion Mass Predictions in a Generalized Extended Technicolor Scenario. PhysicalReviewD, 51, 1377-1385. https://doi.org/10.1103/physrevd.51.1377
[17]
Ross, G.G. (1995) Fermion Mass Prediction from Infra-Red Fixed Points. PhysicsLettersB, 364, 216-226. https://doi.org/10.1016/0370-2693(95)01052-1
[18]
Hernandez-Galeana, A. (2011) Predictions for Fermion Masses and Mixing from a Low Energy SU(3) Flavor Symmetry Model with a Light Sterile Neutrino. https://doi.org/10.48550/arXiv.1111.7286
[19]
Towe, J. (2013) On Approximating Fermion Masses in Terms of Stationary Super-String States. JournalofModernPhysics, 4, 551-554. https://doi.org/10.4236/jmp.2013.44076
[20]
Mongan, T.R. (2024) Standard Model Fermion Masses and Charges from Holographic Analysis. JournalofModernPhysics, 15, 796-803. https://doi.org/10.4236/jmp.2024.156035
[21]
Sirunyan, A.M., Tumasyan, A., Adam, W., Bergauer, T., Dragicevic, M., Erö, J., et al. (2021) Evidence for Higgs Boson Decay to a Pair of Muons. JournalofHighEnergyPhysics, 2021, Article No. 148. https://doi.org/10.1007/jhep01(2021)148