Studies of the deformation characteristics of living cells can offer insights into the connections among mechanical state, chemical and biological responses and the onset, progression of diseases. Deformation imposed by optical tweezers provides a useful means for the study of single cell mechanics under a variety of well-controlled stress-states. In this paper, the mechanics of the human red blood cell (erythrocyte) are subjected to deformation by optical tweezers. We then present new experimental and elastic properties of human red blood cells using a trapped silica bead in optical tweezers. The mean values of the properties obtained, in particular the elastic stiffness and the shear stiffness, were Eh = (10.82 ± 0.24) μN/m and Gh = (4.10 ± 0.89) μN/m. These results show that this approach to stretch the red blood cell can be used as an over method for RBC study.
References
[1]
Evans, E. and Fung, Y. (1972) Improved Measurements of the Erythrocyte Geometry. Microvascular Research, 4, 335-347. https://doi.org/10.1016/0026-2862(72)90069-6
[2]
Wang, X., Yu, J., Wang, P. and Chen, J. (2008) Light Distribution in the Erythrocyte under Laser Irradiation: A Finite-Difference Time-Domain Calculation. Applied Optics, 47, 4037-4044. https://doi.org/10.1364/ao.47.004037
[3]
Ashkin, A., Dziedzic, J.M. and Yamane, T. (1987) Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature, 330, 769-771. https://doi.org/10.1038/330769a0
[4]
Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C. and Käs, J. (2001) The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells. Biophysical Journal, 81, 767-784. https://doi.org/10.1016/s0006-3495(01)75740-2
[5]
Ashok, P.C. and Dholakia, K. (2012) Optical Trapping for Analytical Biotechnology. Current Opinion in Biotechnology, 23, 16-21. https://doi.org/10.1016/j.copbio.2011.11.011
[6]
Song, H., Liu, Y., Zhang, B., Tian, K., Zhu, P., Lu, H., et al. (2016) Study of in Vitro RBCs Membrane Elasticity with AOD Scanning Optical Tweezers. Biomedical Optics Express, 8, 384-394. https://doi.org/10.1364/boe.8.000384
[7]
Hénon, S., Lenormand, G., Richert, A. and Gallet, F. (1999) A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers. Biophysical Journal, 76, 1145-1151. https://doi.org/10.1016/s0006-3495(99)77279-6
[8]
Yale, P., Konin, J.E., Kouacou, M.A. and Zoueu, J.T. (2018) New Detector Sensitivity Calibration and the Calculation of the Interaction Force between Particles Using an Optical Tweezer. Micromachines, 9, Article 425. https://doi.org/10.3390/mi9090425
[9]
Osterman, N. (2010) Tweezpal—Optical Tweezers Analysis and Calibration Software. Computer Physics Communications, 181, 1911-1916. https://doi.org/10.1016/j.cpc.2010.07.024
[10]
Jun, Y., Tripathy, S.K., Narayanareddy, B.R.J., Mattson-Hoss, M.K. and Gross, S.P. (2014) Calibration of Optical Tweezers for in Vivo Force Measurements: How Do Different Approaches Compare? Biophysical Journal, 107, 1474-1484. https://doi.org/10.1016/j.bpj.2014.07.033
[11]
Sahuma, S., Chang, D., Arai, F., Kera, K. and Uozumi, N. (2017) Mechanical Characterization of Cyanobacteria under Osmotic Stress. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 22-26 January 2017, 1248-1251. https://doi.org/10.1109/memsys.2017.7863643
[12]
Evans, E.A. (1983) Bending Elastic Modulus of Red Blood Cell Membrane Derived from Buckling Instability in Micropipet Aspiration Tests. Biophysical Journal, 43, 27-30. https://doi.org/10.1016/s0006-3495(83)84319-7
[13]
Strey, H., Peterson, M. and Sackmann, E. (1995) Measurement of Erythrocyte Membrane Elasticity by Flicker Eigenmode Decomposition. Biophysical Journal, 69, 478-488. https://doi.org/10.1016/s0006-3495(95)79921-0
[14]
Alderman, E., Fudenberg, H. and Lovins, R. (1981) Isolation and Characterization of an Age-Related Antigen Present on Senescent Human Red Blood Cells. Blood, 58, 341-349. https://doi.org/10.1182/blood.v58.2.341.341
[15]
Mills, J.P., Qie, L., Dao, M., Lim, C.T. and Suresh, S. (2004) Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell with Optical Tweezers. Mechanics & Chemistry of Biosystems, 1, 169-180.
[16]
Evans, E.A. (1973) New Membrane Concept Applied to the Analysis of Fluid Shear-and Micropipette-Deformed Red Blood Cells. Biophysical Journal, 13, 941-954. https://doi.org/10.1016/s0006-3495(73)86036-9
[17]
Discher, D.E., Boal, D.H. and Boey, S.K. (1998) Simulations of the Erythrocyte Cytoskeleton at Large Deformation. II. Micropipette Aspiration. Biophysical Journal, 75, 1584-1597. https://doi.org/10.1016/s0006-3495(98)74076-7
[18]
Brule-Bareil, P. and Sheng, Y.L. (2008) Evaluation of Fiber Coupling Coefficient by a Deformed Cell in Dual-Beam Optical Stretcher. Proc. SPIE 6832, Holography and Diffractive Optics III, 68320L, 4 January 2008. https://doi.org/10.1117/12.754723
[19]
Yale, P., Kouacou, M.A., Konin, J.E., Megnassan, E. and Zoueu, J.T. (2021) Lateral Deformation of Human Red Blood Cells by Optical Tweezers. Micromachines, 12, Article 1024. https://doi.org/10.3390/mi12091024
[20]
Yale, P., Konin, J.M.E., N’guessan, A.A., Kouacou, M.A. and Zoueu, J.T. (2024) Human Eosinophil Cell Manipulation by Optical Tweezers. Open Journal of Biophysics, 14, 330-338. https://doi.org/10.4236/ojbiphy.2024.143012
[21]
N'guessan, A.A., Yale, P., Konin, E.J.M., Kouacou, M.A. and Jérémie, Z.T. (2025) Characterization of Red Blood Cells Infected by Plasmodium falciparum Using Optical Tweezers. Scientific African, 27, e02553. https://doi.org/10.1016/j.sciaf.2025.e02553