Spinal arthrodesis is a common surgical procedure for treating degenerative, traumatic, and deformative pathologies, with osteobiology playing a fundamental role in spinal fusion. Although autografts are the gold standard due to their osteogenic capacity, they are associated with significant morbidity. This has led to the development of alternative biomaterials, such as allografts, demineralized bone matrices (DBM), and bone morphogenetic proteins (BMP). This systematic review aimed to analyze the effectiveness and safety of osteobiological materials used in spinal arthrodesis, focusing on their properties and the influence of internal fixation on fusion rates. A literature search was conducted in scientific databases following the PRISMA methodology, selecting studies that evaluated fusion rates, complications, and osteointegration in spinal surgery. Results showed that BMP-2 achieved fusion rates of 92%, while autografts reached 100% but with higher morbidity. The combination of internal fixation with bone grafts improved biomechanical stability and reduced bone resorption. Additionally, the use of teriparatide and zoledronic acid optimized bone consolidation in osteoporotic patients. These findings suggest that graft selection should be individualized, considering patient-specific factors and optimizing internal fixation to enhance clinical outcomes in spinal arthrodesis.
References
[1]
Feng, C., Zhang, Y., Chong, F., Yang, M., Liu, C., Liu, L., et al. (2019) Establishment and Implementation of an Enhanced Recovery after Surgery (ERAS) Pathway Tailored for Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery. WorldNeurosurgery, 129, e317-e323. https://doi.org/10.1016/j.wneu.2019.05.139
[2]
Debono, B., Wainwright, T.W., Wang, M.Y., Sigmundsson, F.G., Yang, M.M.H., Smid-Nanninga, H., et al. (2021) Consensus Statement for Perioperative Care in Lumbar Spinal Fusion: Enhanced Recovery after Surgery (ERAS®) Society Recommendations. TheSpineJournal, 21, 729-752. https://doi.org/10.1016/j.spinee.2021.01.001
[3]
Boden, S.D., Schimandle, J.H. and Hutton, W.C. (1995) The Use of an Osteoinductive Growth Factor for Lumbar Spinal Fusion. Spine, 20, 2633-2644. https://doi.org/10.1097/00007632-199512150-00004
[4]
Dimar, J.R., Glassman, S.D., Burkus, J.K., Carreon, L.Y. and Clinical Trial Group (2006) Clinical and Radiographic Analysis of an Optimized rhBMP-2 Formulation as an Autograft Replacement in Posterolateral Lumbar Spine Arthrodesis. JournalofBoneandJointSurgery, 88, 583-594. https://pubmed.ncbi.nlm.nih.gov/19487515/
[5]
Khan, S.N., Fraser, J.F., Sandhu, H.S., Cammisa, F.P., Girardi, F.P. and Lane, J.M. (2005) Use of Osteopromotive Growth Factors, Demineralized Bone Matrix, and Ceramics to Enhance Spinal Fusion. JournaloftheAmericanAcademyofOrthopaedicSurgeons, 13, 129-137. https://doi.org/10.5435/00124635-200503000-00006
[6]
Burkus, J.K., Gornet, M.F., Schuler, T.C., Kleeman, T.J. and Zdeblick, T.A. (2009) Six-year Outcomes of Anterior Lumbar Interbody Arthrodesis with Use of Interbody Fusion Cages and Recombinant Human Bone Morphogenetic Protein-2. TheJournalofBoneandJointSurgery-AmericanVolume, 91, 1181-1189. https://doi.org/10.2106/jbjs.g.01485
[7]
Glassman, S.D., Carreon, L.Y., Djurasovic, M., Campbell, M.J., Puno, R.M., Johnson, J.R. and Dimar, J.R. (2007) Posterolateral Lumbar Spine Fusion with INFUSE Bone Graft. Spine Journal, 7, 44-49. https://pubmed.ncbi.nlm.nih.gov/17197332/
[8]
Mroz, T.E., Wang, J.C., Hashimoto, R. and Norvell, D.C. (2010) Complications Related to Osteobiologics Use in Spine Surgery. Spine, 35, S86-S104. https://doi.org/10.1097/brs.0b013e3181d81ef2
[9]
Vaccaro, A.R., Anderson, D.G., Patel, T., Fischgrund, J., Truumees, E., Herkowitz, H.N., et al. (2005) Comparison of OP-1 Putty (rhBMP-7) to Iliac Crest Autograft for Posterolateral Lumbar Arthrodesis: A Minimum 2-Year Follow-Up Pilot Study. Spine, 30, 2709-2716. https://doi.org/10.1097/01.brs.0000190812.08447.ba
[10]
Alvarez-Galovich, L., Ley Urzaiz, L., Martín-Benlloch, J.A. and Calatayud Pérez, J. (2023) [Translated Article] Recommendations for Enhanced Post-Surgical Recovery in the Spine (REPOC). RevistaEspañoladeCirugíaOrtopédicayTraumatología, 67, T83-T93. https://doi.org/10.1016/j.recot.2022.12.014
[11]
Ohtori, S., Inoue, G., Orita, S., Eguchi, Y., Ochiai, N., Kishida, S., Shigemura, T., Yamauchi, K., Aoki, Y., Nakamura, J., Miyagi, M., Kamoda, H., Suzuki, M., Kubota, G., Sakuma, Y. and Takahashi, K. (2012) Teriparatide Accelerates Lumbar Posterol-ateral Fusion in Women with Postmenopausal Osteoporosis: Prospective Study. Spine, 37, E1464-E1468. https://doi.org/10.1097/BRS.0b013e31826ca2a8
[12]
Chen, L., Yang, H., Tang, T. and Yang, L. (2012) Effects of Zoledronic Acid on Bone Fusion in Osteoporotic Patients after Lumbar Fusion. Osteoporosis International, 37, 560-564. https://doi.org/10.1007/s00198-015-3398-1
[13]
Park, Y.S., Kim, H.S., Baek, S.W. and Kim, K. (2013) The Effect of Zoledronic Acid on the Volume of Fusion Mass in Lumbar Spinal Fusion. Clinics in Orthopedic Surgery, 5, 292-297. https://doi.org/10.4055/cios.2013.5.4.292
[14]
Díaz-Romero Paz, R. and Reimunde Figueira, P. (2018) Osteoporosis and Spinal Surgery: Strategies for Medical and Surgical Treatment. Revista de Osteoporosis and Metabolismo Mineral, 10, 41-54. https://dx.doi.org/10.4321/s1889-836x2018000100007
[15]
Ohtori, S., Inoue, G., Orita, S., Eguchi, Y., Ochiai, N., Kishida, S., Shigemura, T., Yamauchi, K., Aoki, Y., Nakamura, J., Miyagi, M., Kamoda, H., Suzuki, M., Kubota, G., Sakuma, Y. and Takahashi, K. (2013) Comparison of Teriparatide and Bisphosphonate Treatment to Reduce Pedicle Screw Loosening after Lumbar Spinal Fusion Surgery in Postmenopausal Women with Osteoporosis from a Bone Quality Perspective. Spine, 38, E487-E492. https://doi.org/10.1097/BRS.0b013e31828826dd
[16]
Vaccaro, A.R., Sharan, A.D., Tuan, R.S., Kang, J.D., An, H.S., Morone, M.A., et al. (2011) The Use of Biologic Materials in Spinal Fusion. Orthopedics, 24, 191-197. https://doi.org/10.3928/0147-7447-20010201-25
[17]
Friedlaender, G.E., Perry, C.R., Cole, J.D., Cook, S.D., Cierny, G., Muschler, G.F., et al. (2001) Osteogenic Protein-1 (Bone Morphogenetic Protein-7) in the Treatment of Tibial Nonunions: A Prospective, Randomized Clinical Trial Comparing rhOP-1 with Fresh Bone Autograft. TheJournalofBoneandJointSurgery-AmericanVolume, 83, S151-S158. https://doi.org/10.2106/00004623-200100002-00010
[18]
Holte, D.C., O’Brien, J.P. and Renton, P. (1994) Anterior Lumbar Fusion Using a Hybrid Interbody Graft. EuropeanSpineJournal, 3, 32-38. https://doi.org/10.1007/bf02428314
[19]
Kaiser, M.G., Haid, R.W. and Subach, B.R. (2002) Anterior Lumbar Corpectomy for the Treatment of Lumbar Burst Fractures. JournalofNeurosurgery: Spine, 97, 1-10.
[20]
Martin, G.J., Boden Jr., S.D., Titus, L. and Scarborough, N.L. (1999) New Formulations of Demineralized Bone Matrix as a more Effective Graft Alternative in Experimental Posterolateral Lumbar Spine Arthrodesis. Spine, 24, 637-645. https://doi.org/10.1097/00007632-199904010-00005