全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research Progress of CENPA and Cancer

DOI: 10.4236/jbm.2025.134023, PP. 265-280

Keywords: Centromere, Centromere Protein A, Cancer, Chromosomal Instability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abnormal cell division leading to chromosomal instability is a hallmark of cancer development. Accurate chromosome classification Lysis plays an important role in cell division, and the centromere is the key to accurate chromosome separation. Centromeric protein A CENPA is a centromere-specific histone H3-like variant gene and is also the most studied in the centromere protein family. A wide range of factors are overexpressed in various cancers. Overexpression of CENPA may lead to centromere heterochromatin along chromosome arms. Diffusion leads to microtubule kinetochore anchoring defects, ultimately resulting in genomic instability. Therefore, exploring the relationship between CENPA overexpression and the relationship between cancer progression is of great significance for finding new targeted treatment methods.

References

[1]  Wang, L. and Zhang, Y. (2023) Research Progress on the Relationship between CENPA Expression and Cancer. Journal of Local Surgical Sciences, 32, 1021-1024.
[2]  Zhang, Y. and Chen, C. (2022) Research Progress of Centromere Protein M in Malignant Tumors. Journal of Surgical Surgery, 31, 354-357.
[3]  Liao, J., Chen, Z., Chang, R., Yuan, T., Li, G., Zhu, C., et al. (2023) CENPA Functions as a Transcriptional Regulator to Promote Hepatocellular Carcinoma Progression via Cooperating with YY1. International Journal of Biological Sciences, 19, 5218-5232.
https://doi.org/10.7150/ijbs.85656
[4]  Li, W. (2023) Study on the Expression of Centromere A Gene in Endometrial Cancer Tissue and Its Relationship with Clinical Pathological Characteristics. Master’s Thesis, Jilin University.
[5]  Brinkley, B.R., Ouspenski, I. and Zinkowski, R.P. (1992) Structure and Molecular Organization of the Centromere-Kinetochore Complex. Trends in Cell Biology, 2, 15-21.
https://doi.org/10.1016/0962-8924(92)90139-e
[6]  Moroi, Y., Peebles, C., Fritzler, M.J., Steigerwald, J. and Tan, E.M. (1980) Autoantibody to Centromere (Kinetochore) in Scleroderma Sera. Proceedings of the National Academy of Sciences, 77, 1627-1631.
https://doi.org/10.1073/pnas.77.3.1627
[7]  Earnshaw, W.C. and Rothfield, N. (1985) Identification of a Family of Human Centromere Proteins Using Autoimmune Sera from Patients with Scleroderma. Chromosoma, 91, 313-321.
https://doi.org/10.1007/bf00328227
[8]  Sullivan, K.F., Hechenberger, M. and Masri, K. (1994) Human CENP-A Contains a Histone H3 Related Histone Fold Domain That Is Required for Targeting to the Centromere. The Journal of Cell Biology, 127, 581-592.
https://doi.org/10.1083/jcb.127.3.581
[9]  Shrestha, R.L., Ahn, G.S., Staples, M.I., Sathyan, K.M., Karpova, T.S., Foltz, D.R., et al. (2017) Mislocalization of Centromeric Histone H3 Variant CENP-A Contributes to Chromosomal Instability (CIN) in Human Cells. Oncotarget, 8, 46781-46800.
https://doi.org/10.18632/oncotarget.18108
[10]  Wang, Z., Inuzuka, H., Zhong, J., Wan, L., Fukushima, H., Sarkar, F.H., et al. (2012) Tumor Suppressor Functions of FBW7 in Cancer Development and Progression. FEBS Letters, 586, 1409-1418.
https://doi.org/10.1016/j.febslet.2012.03.017
[11]  Wang, Z., Liu, P., Inuzuka, H. and Wei, W. (2014) Roles of F-Box Proteins in Cancer. Nature Reviews Cancer, 14, 233-247.
https://doi.org/10.1038/nrc3700
[12]  Takada, M., Zhang, W., Suzuki, A., Kuroda, T.S., Yu, Z., Inuzuka, H., et al. (2017) FBW7 Loss Promotes Chromosomal Instability and Tumorigenesis via Cyclin E1/CDK2-Mediated Phosphorylation of CENP-A. Cancer Research, 77, 4881-4893.
https://doi.org/10.1158/0008-5472.can-17-1240
[13]  Dunleavy, E.M., Roche, D., Tagami, H., Lacoste, N., Ray-Gallet, D., Nakamura, Y., et al. (2009) HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres. Cell, 137, 485-497.
https://doi.org/10.1016/j.cell.2009.02.040
[14]  Foltz, D.R., Jansen, L.E.T., Bailey, A.O., Yates, J.R., Bassett, E.A., Wood, S., et al. (2009) Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP. Cell, 137, 472-484.
https://doi.org/10.1016/j.cell.2009.02.039
[15]  Fujita, Y., Hayashi, T., Kiyomitsu, T., Toyoda, Y., Kokubu, A., Obuse, C., et al. (2007) Priming of Centromere for CENP-A Recruitment by Human hMis18α, hMis18β, and M18BP1. Developmental Cell, 12, 17-30.
https://doi.org/10.1016/j.devcel.2006.11.002
[16]  Wu, Q., Chen, Y., Fu, J., You, Q., Wang, S., Huang, X., et al. (2014) Short Hairpin RNA-Mediated Down-Regulation of CENP-A Attenuates the Aggressive Phenotype of Lung Adenocarcinoma Cells. Cellular Oncology, 37, 399-407.
https://doi.org/10.1007/s13402-014-0199-z
[17]  Corgna, E., Betti, M., Gatta, G., Roila, F. and De Mulder, P.H.M. (2007) Renal Cancer. Critical Reviews in Oncology/Hematology, 64, 247-262.
https://doi.org/10.1016/j.critrevonc.2007.04.007
[18]  Davis, C.F., Ricketts, C.J., Wang, M., Yang, L., Cherniack, A.D., Shen, H., et al. (2014) The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 26, 319-330.
https://doi.org/10.1016/j.ccr.2014.07.014
[19]  Liu, Q., Cornejo, K.M., Cheng, L., Hutchinson, L., Wang, M., Zhang, S., et al. (2018) Next-Generation Sequencing to Detect Deletion of RB1 and ERBB4 Genes in Chromophobe Renal Cell Carcinoma. The American Journal of Pathology, 188, 846-852.
https://doi.org/10.1016/j.ajpath.2017.12.003
[20]  Wang, Q., Xu, J., Xiong, Z., Xu, T., Liu, J., Liu, Y., et al. (2021) CENPA Promotes Clear Cell Renal Cell Carcinoma Progression and Metastasis via Wnt/β-Catenin Signaling Pathway. Journal of Translational Medicine, 19, Article No. 417.
https://doi.org/10.1186/s12967-021-03087-8
[21]  Zhang, W., Xu, Y., Zhang, J. and Wu, J. (2020) Identification and Analysis of Novel Biomarkers Involved in Chromophobe Renal Cell Carcinoma by Integrated Bioinformatics Analyses. BioMed Research International, 2020, Article ID: 2671281.
https://doi.org/10.1155/2020/2671281
[22]  Chen, M. and Dong, X. (2022) Research Progress on the Relationship between Wnt/β-Catenin Signaling Pathway and Inflammatory Bowel Disease. Shandong Medicine, 62, 101-104.
[23]  Li, J., Li, Q., Yuan, Y., Xie, Y., Zhang, Y. and Zhang, R. (2022) High CENPA Expression in Papillary Renal Cell Carcinoma Tissues Is Associated with Poor Prognosis. BMC Urology, 22, Article No. 157.
https://doi.org/10.1186/s12894-022-01106-4
[24]  Cao, M. and Chen, W. (2021) GLOBOCAN 2020 Global Cancer Statistical Data Interpretation. Chinese Journal of Frontiers in Medicine, 13, 63-69.
[25]  Siegel, R.L., Miller, K.D. and Jemal, A. (2017) Cancer Statistics, 2017. CA: A Cancer Journal for Clinicians, 67, 7-30.
https://doi.org/10.3322/caac.21387
[26]  Zhang, H., Kong, C. and Song, W. (2023) Expression and Prognostic Value Analysis of IMPA2 in Colon Cancer. Journal of Practical Oncology, 38, 461-469.
[27]  Tomonaga, T., Matsushita, K., Yamaguchi, S., et al. (2003) Overexpression and Mistargeting of Centromere Protein-A in Human Primary Colorectal Cancer. Cancer Research, 63, 3511-3516.
[28]  Bonkowski, M.S. and Sinclair, D.A. (2016) Slowing Ageing by Design: The Rise of NAD+ and Sirtuin-Activating Compounds. Nature Reviews Molecular Cell Biology, 17, 679-690.
https://doi.org/10.1038/nrm.2016.93
[29]  Liu, X., Li, C., Li, Q., Chang, H. and Tang, Y. (2020) SIRT7 Facilitates CENP-A Nucleosome Assembly and Suppresses Intestinal Tumorigenesis. iScience, 23, Article ID: 101461.
https://doi.org/10.1016/j.isci.2020.101461
[30]  Lu, J., Tan, M. and Cai, Q. (2015) The Warburg Effect in Tumor Progression: Mitochondrial Oxidative Metabolism as an Anti-Metastasis Mechanism. Cancer Letters, 356, 156-164.
https://doi.org/10.1016/j.canlet.2014.04.001
[31]  Kelley, J.B., Talley, A.M., Spencer, A., Gioeli, D. and Paschal, B.M. (2010) Karyopherin Α7 (KPNA7), a Divergent Member of the Importin Α Family of Nuclear Import Receptors. BMC Cell Biology, 11, Article No. 63.
https://doi.org/10.1186/1471-2121-11-63
[32]  Christiansen, A. and Dyrskjøt, L. (2013) The Functional Role of the Novel Biomarker Karyopherin α 2 (KPNA2) in Cancer. Cancer Letters, 331, 18-23.
https://doi.org/10.1016/j.canlet.2012.12.013
[33]  Fan, L., Strasser-Weippl, K., Li, J., St Louis, J., Finkelstein, D.M., Yu, K., et al. (2014) Breast Cancer in China. The Lancet Oncology, 15, E279-E289.
https://doi.org/10.1016/s1470-2045(13)70567-9
[34]  Rajput, A.B., Hu, N., Varma, S., Chen, C., Ding, K., Park, P.C., et al. (2011) Immunohistochemical Assessment of Expression of Centromere Protein-A (CENPA) in Human Invasive Breast Cancer. Cancers, 3, 4212-4227.
https://doi.org/10.3390/cancers3044212
[35]  Corti, F., Nichetti, F., Raimondi, A., Niger, M., Prinzi, N., Torchio, M., et al. (2019) Targeting the PI3k/AKT/mTOR Pathway in Biliary Tract Cancers: A Review of Current Evidences and Future Perspectives. Cancer Treatment Reviews, 72, 45-55.
https://doi.org/10.1016/j.ctrv.2018.11.001
[36]  Miricescu, D., Totan, A., Stanescu-Spinu, I., Badoiu, S.C., Stefani, C. and Greabu, M. (2020) PI3k/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. International Journal of Molecular Sciences, 22, Article 173.
https://doi.org/10.3390/ijms22010173
[37]  Zhang, S., Xie, Y., Tian, T., Yang, Q., Zhou, Y., Qiu, J., et al. (2021) High Expression Levels of Centromere Protein a Plus Upregulation of the Phosphatidylinositol 3-Kinase/Akt/mammalian Target of Rapamycin Signaling Pathway Affect Chemotherapy Response and Prognosis in Patients with Breast Cancer. Oncology Letters, 21, Article No. 410.
https://doi.org/10.3892/ol.2021.12671
[38]  Bhan, A., Soleimani, M. and Mandal, S.S. (2017) Long Noncoding RNA and Cancer: A New Paradigm. Cancer Research, 77, 3965-3981.
https://doi.org/10.1158/0008-5472.can-16-2634
[39]  McGovern, S.L., Qi, Y., Pusztai, L., Symmans, W.F. and Buchholz, T.A. (2012) Centromere Protein-A, an Essential Centromere Protein, Is a Prognostic Marker for Relapse in Estrogen Receptor-Positive Breast Cancer. Breast Cancer Research, 14, Article No. R72.
https://doi.org/10.1186/bcr3181
[40]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[41]  Xu, J., Lin, M., Yuan, D., et al. (2023) The Expression and Clinical Significance of ADAM9 and P53 in Ovarian Cancer. Journal of Taizhou Vocational and Technical College, 23, 62-64.
[42]  Tuo, Q., Party, Q. and Li, Z. (2022) Study on the Tumor Marker Potential of Holliday Cross Recognition Protein. Journal of Yanan University, 19, 91-93.
[43]  Dou, Z., Qiu, C., Zhang, X., Yao, S., Zhao, C., Wang, Z., et al. (2022) HJURP Promotes Malignant Progression and Mediates Sensitivity to Cisplatin and WEE1-Inhibitor in Serous Ovarian Cancer. International Journal of Biological Sciences, 18, 1188-1210.
https://doi.org/10.7150/ijbs.65589
[44]  Lai, W., Zhu, W., Xiao, C., Li, X., Wang, Y., Han, Y., et al. (2021) HJURP Promotes Proliferation in Prostate Cancer Cells through Increasing CDKN1A Degradation via the GSK3β/JNK Signaling Pathway. Cell Death & Disease, 12, Article No. 583.
https://doi.org/10.1038/s41419-021-03870-x
[45]  Zhang, Y., Zhang, W., Sun, L., Yue, Y., Shen, D., Tian, B., et al. (2022) HJURP Inhibits Proliferation of Ovarian Cancer Cells by Regulating CENP-A/CENP-N. Bulletin du Cancer, 109, 1007-1016.
https://doi.org/10.1016/j.bulcan.2021.12.011
[46]  Han, J., Xie, R., Yang, Y., Chen, D., Liu, L., Wu, J., et al. (2021) CENPA Is One of the Potential Key Genes Associated with the Proliferation and Prognosis of Ovarian Cancer Based on Integrated Bioinformatics Analysis and Regulated by MYBL2. Translational Cancer Research, 10, 4076-4086.
https://doi.org/10.21037/tcr-21-175
[47]  Omlin, A., D’Addario, G., Gillessen, S., Cerny, T., von Hessling, A. and Früh, M. (2009) Activity of Pemetrexed against Brain Metastases in a Patient with Adenocarcinoma of the Lung. Lung Cancer, 65, 383-384.
https://doi.org/10.1016/j.lungcan.2009.03.019
[48]  Ladelfa, M.F., Toledo, M.F., Laiseca, J.E. and Monte, M. (2011) Interaction of P53 with Tumor Suppressive and Oncogenic Signaling Pathways to Control Cellular Reactive Oxygen Species Production. Antioxidants & Redox Signaling, 15, 1749-1761.
https://doi.org/10.1089/ars.2010.3652
[49]  Chari, N.S., Pinaire, N.L., Thorpe, L., Medeiros, L.J., Routbort, M.J. and McDonnell, T.J. (2009) The P53 Tumor Suppressor Network in Cancer and the Therapeutic Modulation of Cell Death. Apoptosis, 14, 336-347.
https://doi.org/10.1007/s10495-009-0327-9
[50]  Wu, Q., Qian, Y., Zhao, X., Wang, S., Feng, X., Chen, X., et al. (2012) Expression and Prognostic Significance of Centromere Protein A in Human Lung Adenocarcinoma. Lung Cancer, 77, 407-414.
https://doi.org/10.1016/j.lungcan.2012.04.007
[51]  Howman, E.V., Fowler, K.J., Newson, A.J., Redward, S., MacDonald, A.C., Kalitsis, P., et al. (2000) Early Disruption of Centromeric Chromatin Organization in Centromere Protein a (Cenpa) Null Mice. Proceedings of the National Academy of Sciences, 97, 1148-1153.
https://doi.org/10.1073/pnas.97.3.1148
[52]  Eun, K., Ham, S.W. and Kim, H. (2017) Cancer Stem Cell Heterogeneity: Origin and New Perspectives on CSC Targeting. BMB Reports, 50, 117-125.
https://doi.org/10.5483/bmbrep.2017.50.3.222
[53]  Yu, Q., Liu, H., Liu, C., Xiang, Y., Zong, Q., Wang, J., et al. (2022) CENPA Regulates Tumor Stemness in Lung Adenocarcinoma. Aging, 14, 5537-5553.
https://doi.org/10.18632/aging.204167
[54]  Tang, A., Hallouch, O., Chernyak, V., Kamaya, A. and Sirlin, C.B. (2018) Epidemiology of Hepatocellular Carcinoma: Target Population for Surveillance and Diagnosis. Abdominal Radiology, 43, 13-25.
https://doi.org/10.1007/s00261-017-1209-1
[55]  Mranda, G.M., Xiang, Z., Liu, J., Wei, T. and Ding, Y. (2022) Advances in Prognostic and Therapeutic Targets for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: The Hippo Signaling Pathway. Frontiers in Oncology, 12, Article 937957.
https://doi.org/10.3389/fonc.2022.937957
[56]  Vilgrain, V., Abdel-Rehim, M., Sibert, A. and Ronot, M. (2014) Clinical Studies in Hepatocellular Carcinoma. Future Oncology, 10, 13-16.
https://doi.org/10.2217/fon.14.217
[57]  Shi, H., Yuan, B. and Sun, R. (2021) Analysis of CENPA Expression and Clinical Significance in Hepatocellular Carcinoma Based on TCGA Database. Henan Medical Research, 30, 2310-2313.
[58]  Li, Y., Zhu, Z., Zhang, S., Yu, D., Yu, H., Liu, L., et al. (2011) ShRNA-Targeted Centromere Protein a Inhibits Hepatocellular Carcinoma Growth. PLOS ONE, 6, e17794.
https://doi.org/10.1371/journal.pone.0017794
[59]  Zhang, Y., Yang, L., Shi, J., Lu, Y., Chen, X. and Yang, Z. (2020) The Oncogenic Role of CENPA in Hepatocellular Carcinoma Development: Evidence from Bioinformatic Analysis. BioMed Research International, 2020, Article ID: 3040839.
https://doi.org/10.1155/2020/3040839
[60]  Sherr, C.J. and Roberts, J.M. (1999) CDK Inhibitors: Positive and Negative Regulators of G1-Phase Progression. Genes & Development, 13, 1501-1512.
https://doi.org/10.1101/gad.13.12.1501
[61]  Satyanarayana, A., Hilton, M.B. and Kaldis, P. (2008) P21 Inhibits Cdk1 in the Absence of Cdk2 to Maintain the G1/S Phase DNA Damage Checkpoint. Molecular Biology of the Cell, 19, 65-77.
https://doi.org/10.1091/mbc.e07-06-0525
[62]  Hume, S., Grou, C.P., Lascaux, P., D’Angiolella, V., Legrand, A.J., Ramadan, K., et al. (2021) The NUCKS1-SKP2-p21/p27 Axis Controls S Phase Entry. Nature Communications, 12, Article No. 6959.
https://doi.org/10.1038/s41467-021-27124-8
[63]  Shuaib, M., Ouararhni, K., Dimitrov, S. and Hamiche, A. (2010) HJURP Binds CENP-A via a Highly Conserved N-Terminal Domain and Mediates Its Deposition at Centromeres. Proceedings of the National Academy of Sciences, 107, 1349-1354.
https://doi.org/10.1073/pnas.0913709107
[64]  Li, Y., Yi, Q., Liao, X., Han, C., Zheng, L., Li, H., et al. (2021) Hypomethylation-Driven Overexpression of HJURP Promotes Progression of Hepatocellular Carcinoma and Is Associated with Poor Prognosis. Biochemical and Biophysical Research Communications, 566, 67-74.
https://doi.org/10.1016/j.bbrc.2021.05.102
[65]  Gu, X., Fu, J., Feng, X., Huang, X., Wang, S., Chen, X., et al. (2014) Expression and Prognostic Relevance of Centromere Protein A in Primary Osteosarcoma. Pathology-Research and Practice, 210, 228-233.
https://doi.org/10.1016/j.prp.2013.12.007
[66]  Sadykova, L.R., Ntekim, A.I., Muyangwa-Semenova, M., Rutland, C.S., Jeyapalan, J.N., Blatt, N., et al. (2020) Epidemiology and Risk Factors of Osteosarcoma. Cancer Investigation, 38, 259-269.
https://doi.org/10.1080/07357907.2020.1768401
[67]  Bacci, G., Longhi, A., Versari, M., Mercuri, M., Briccoli, A. and Picci, P. (2006) Prognostic Factors for Osteosarcoma of the Extremity Treated with Neoadjuvant Chemotherapy. Cancer, 106, 1154-1161.
https://doi.org/10.1002/cncr.21724
[68]  Li, Q., Liang, J. and Chen, B. (2020) Identification of CDCA8, DSN1 and BIRC5 in Regulating Cell Cycle and Apoptosis in Osteosarcoma Using Bioinformatics and Cell Biology. Technology in Cancer Research & Treatment, 19, 1-11.
https://doi.org/10.1177/1533033820965605
[69]  Carlsson, P. and Mahlapuu, M. (2002) Forkhead Transcription Factors: Key Players in Development and Metabolism. Developmental Biology, 250, 1-23.
https://doi.org/10.1006/dbio.2002.0780
[70]  Wang, I., Chen, Y., Hughes, D., Petrovic, V., Major, M.L., Park, H.J., et al. (2005) Forkhead Box M1 Regulates the Transcriptional Network of Genes Essential for Mitotic Progression and Genes Encoding the SCF (Skp2-Cks1) Ubiquitin Ligase. Molecular and Cellular Biology, 25, 10875-10894.
https://doi.org/10.1128/mcb.25.24.10875-10894.2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133