全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research Progress of Tinnitus and Neuroinflammation

DOI: 10.4236/jbm.2025.134022, PP. 251-264

Keywords: Tinnitus, Neuroinflammation, Microglia, Animal Models, Nanodelivery Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tinnitus is a subjective auditory perception produced in the absence of external sound source or electric stimulation. Its occurrence mechanism involves multiple factors, such as auditory pathway abnormalities, central nervous system remodeling and neuroinflammatory response. Recent studies have shown that neuroinflammation plays a key role in the development and chronicity of tinnitus. Factors such as noise exposure and ototoxic drugs can activate microglial cells in the central nervous system, and animal model studies have confirmed that targeting microglial cell polarization and anti-inflammatory drugs can effectively improve tinnitus symptoms. Nanodelivery system and combined target intervention strategy solve the challenges of poor BBB penetration and low drug delivery efficiency for precision treatment. This paper systematically reviews the association mechanism of neuroinflammation and tinnitus and the research progress of targeted therapy, which provides a theoretical basis for the clinical diagnosis and treatment of tinnitus.

References

[1]  Li, Z.C., Cheng, N., Xing, J.B., et al. (2024) Stellate Ganglion Block as an Adjunctive Intervention for Chronic Subjective Tinnitus Distress: Preliminary Analysis of Efficacy and Predictors. Journal of Sun Yat-sen University (Medical Sciences), 45, 276-282.
[2]  Saeed, S. and Khan, Q.U. (2021) The Pathological Mechanisms and Treatments of Tinnitus. Discoveries, 9, e137.
https://doi.org/10.15190/d.2021.16
[3]  Wang, K., Tang, D., Ma, J. and Sun, S. (2020) Auditory Neural Plasticity in Tinnitus Mechanisms and Management. Neural Plasticity, 2020, Article ID: 7438461.
https://doi.org/10.1155/2020/7438461
[4]  Vijayakumar, K.A., Cho, G., Maharajan, N. and Jang, C.H. (2022) A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy. Experimental Neurobiology, 31, 232-242.
https://doi.org/10.5607/en22002
[5]  Shao, N., Jiang, S., Younger, D., Chen, T., Brown, M., Rao, K.V.R., et al. (2021) Central and Peripheral Auditory Abnormalities in Chinchilla Animal Model of Blast-Injury. Hearing Research, 407, Article ID: 108273.
https://doi.org/10.1016/j.heares.2021.108273
[6]  Chen, X.L., Song, F., Qin, Z.B., et al. (2021) Correlation between Tinnitus Severity and Anxiety, Depression, and Personality Traits. Journal of Audiology and Speech Pathology, 29, 444-446.
[7]  Shi, M.Q., Zhang, W.X., Ni, T.Y., et al. (2024) Analysis of Related Factors of Anxiety and Anxiety Tendency in Tinnitus Patients. National Medical Journal of China, 104, 3392-3396.
[8]  Langguth, B., de Ridder, D., Schlee, W. and Kleinjung, T. (2024) Tinnitus: Clinical Insights in Its Pathophysiology-A Perspective. Journal of the Association for Research in Otolaryngology, 25, 249-258.
https://doi.org/10.1007/s10162-024-00939-0
[9]  Wójcik, J., Kochański, B., Cieśla, K., Lewandowska, M., Karpiesz, L., Niedziałek, I., et al. (2023) An MR Spectroscopy Study of Temporal Areas Excluding Primary Auditory Cortex and Frontal Regions in Subjective Bilateral and Unilateral Tinnitus. Scientific Reports, 13, Article No. 18417.
https://doi.org/10.1038/s41598-023-45024-3
[10]  Hu, J., Xu, J., Shang, S., Chen, H., Yin, X., Qi, J., et al. (2021) Cerebral Blood Flow Difference between Acute and Chronic Tinnitus Perception: A Perfusion Functional Magnetic Resonance Imaging Study. Frontiers in Neuroscience, 15, Article 752419.
https://doi.org/10.3389/fnins.2021.752419
[11]  Wei, X., Yi, X., Liu, J., Sui, X., Li, L., Li, M., et al. (2024) Circ-Phkb Promotes Cell Apoptosis and Inflammation in LPS-Induced Alveolar Macrophages via the TLR4/MyD88/NF-κB/CCL2 Axis. Respiratory Research, 25, Article No. 62.
https://doi.org/10.1186/s12931-024-02677-6
[12]  Mou, Y., Du, Y., Zhou, L., Yue, J., Hu, X., Liu, Y., et al. (2022) Gut Microbiota Interact with the Brain through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Frontiers in Immunology, 13, Article 796288.
https://doi.org/10.3389/fimmu.2022.796288
[13]  Kang, C., Sang, Q., Liu, D., Wang, L., Li, J. and Liu, X. (2024) Polyphyllin I Alleviates Neuroinflammation after Cerebral Ischemia-Reperfusion Injury via Facilitating Autophagy-Mediated M2 Microglial Polarization. Molecular Medicine, 30, Article No. 59.
https://doi.org/10.1186/s10020-024-00828-5
[14]  Xia, Q. and Zhang, J.N. (2024) Research Progress on M1/M2 Microglia in the Central Pathogenesis of Acute Tinnitus. Journal of Audiology and Speech Pathology, 32, 470-473.
[15]  Yin, C., Zhang, M., Cheng, L., Ding, L., Lv, Q., Huang, Z., et al. (2024) Melatonin Modulates TLR4/MyD88/NF-κB Signaling Pathway to Ameliorate Cognitive Impairment in Sleep-Deprived Rats. Frontiers in Pharmacology, 15, Article 1430599.
https://doi.org/10.3389/fphar.2024.1430599
[16]  Steinacher, C., Chacko, L.J., Liu, W., Rask-Andersen, H., Bader, W., Dudas, J., et al. (2022) Visualization of Macrophage Subsets in the Development of the Fetal Human Inner Ear. Frontiers in Immunology, 13, Article 965196.
https://doi.org/10.3389/fimmu.2022.965196
[17]  Fang, J., Li, Z., Wang, P., Zhang, X., Mao, S., Li, Y., et al. (2025) Inhibition of the NLRP3 Inflammasome Attenuates Spiral Ganglion Neuron Degeneration in Aminoglycoside-Induced Hearing Loss. Neural Regeneration Research, 20, 3025-3039.
https://doi.org/10.4103/nrr.nrr-d-23-01879
[18]  Ren, Y., Wu, K., He, Y., Zhang, H., Ma, J., Li, C., et al. (2024) The Role of NLRP3 Inflammasome-Mediated Neuroinflammation in Chronic Noise-Induced Impairment of Learning and Memory Ability. Ecotoxicology and Environmental Safety, 286, Article ID: 117183.
https://doi.org/10.1016/j.ecoenv.2024.117183
[19]  Fan, Y.M., Yang, L.H., Liu, S.Q., et al. (2011) Minocycline Inhibits Hippocampal Microglia in Epileptic Rats. Chinese Journal of Neuromedicine, 10, 865-868.
[20]  Zhu, F.R., Zhao, J.P., Zheng, Y.J., et al. (2015) Effects of Minocycline on Behavioral Abnormalities and Microglial Activity in a Rat Model of Schizophrenia. Chinese Journal of Psychiatry, 48, 27-31.
[21]  Chen, L.J., Yang, X.H., Wang, C.Y., et al. (2018) Effect of N-Acetylcysteine on Toll-Like Receptor 4 Pathway in Microglia under High Glucose and Hypoxia-Ischemia Conditions. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 20, 981-985.
[22]  Zhong, L.Q.Y., Miao, D., Zhang, Y.F., et al. (2023) N-Acetylcysteine Inhibits Brain Inflammation in Mice with Periodontitis and Alzheimer’s Disease. Journal of Xian Jiaotong University (Medical Sciences), 44, 229-235.
[23]  Li, B.J., Zhang, X.T., Fu, Y.B., et al. (2023) Advances in Functional MRI Studies on Idiopathic Tinnitus Mechanisms. Chinese Journal of Medical Imaging Technology, 39, 113-116.
[24]  Zhang, W., Peng, Z. and Gong, S.S. (2017) Research Progress on the Mechanism of Salicylate-Induced Tinnitus. Journal of Audiology and Speech Pathology, 25, 85-90.
[25]  Zhao, C.Y., Yang, J.Y., Wang, W.Q., et al. (2023) Susceptibility to Noise-Induced Hearing Loss in a Mouse Model of Hidden Hearing Loss. Chinese Journal of Otology, 21, 367-371.
[26]  Wang, Y.Y., Sun, Y.H., Liu, K., et al. (2019) Effects of Moderate-to-Low Intensity Noise Exposure on Cochlear Ribbon Synapses. Chinese Journal of Otology, 17, 203-208.
[27]  Fernandez, K.A., Guo, D., Micucci, S., De Gruttola, V., Liberman, M.C. and Kujawa, S.G. (2020) Noise-Induced Cochlear Synaptopathy with and without Sensory Cell Loss. Neuroscience, 427, 43-57.
https://doi.org/10.1016/j.neuroscience.2019.11.051
[28]  Wang, J., Serratrice, N., Lee, C.J., François, F., Sweedler, J.V., Puel, J., et al. (2021) Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Frontiers in Cellular Neuroscience, 15, Article 733004.
https://doi.org/10.3389/fncel.2021.733004
[29]  Ma, Z.X., Fang, Y.J., Zhao, J.S., et al. (2020) BOLD-fMRI Study of Auditory Activation Areas in Tinnitus Patients. Journal of Imaging Research and Medical Applications, 4, 23-24.
[30]  Isler, B., von Burg, N., Kleinjung, T., Meyer, M., Stämpfli, P., Zölch, N., et al. (2022) Lower Glutamate and GABA Levels in Auditory Cortex of Tinnitus Patients: A 2D-JPRESS MR Spectroscopy Study. Scientific Reports, 12, Article No. 4068.
https://doi.org/10.1038/s41598-022-07835-8
[31]  Shan, M., Lin, S., Li, S., Du, Y., Zhao, H., Hong, H., et al. (2017) TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Frontiers in Cellular Neuroscience, 11, Article 35.
https://doi.org/10.3389/fncel.2017.00035
[32]  Ma, K., Guo, J., Wang, G., Ni, Q. and Liu, X. (2020) Toll-Like Receptor 2—Mediated Autophagy Promotes Microglial Cell Death by Modulating the Microglial M1/M2 Phenotype. Inflammation, 43, 701-711.
https://doi.org/10.1007/s10753-019-01152-5
[33]  Liu, L., Liu, J., Bao, J., Bai, Q. and Wang, G. (2020) Interaction of Microglia and Astrocytes in the Neurovascular Unit. Frontiers in Immunology, 11, Article 499.
https://doi.org/10.3389/fimmu.2020.01024
[34]  Lyu, J., Xie, D., Bhatia, T.N., Leak, R.K., Hu, X. and Jiang, X. (2021) Microglial/Macrophage Polarization and Function in Brain Injury and Repair after Stroke. CNS Neuroscience & Therapeutics, 27, 515-527.
https://doi.org/10.1111/cns.13620
[35]  Mao, M., Xu, Y., Zhang, X., Yang, L., An, X., Qu, Y., et al. (2020) Microrna-195 Prevents Hippocampal Microglial/Macrophage Polarization towards the M1 Phenotype Induced by Chronic Brain Hypoperfusion through Regulating CX3CL1/CX3CR1 Signaling. Journal of Neuroinflammation, 17, Article No. 244.
https://doi.org/10.1186/s12974-020-01919-w
[36]  Xu, X., Piao, H., Aosai, F., Zeng, X., Cheng, J., Cui, Y., et al. (2020) Arctigenin Protects against Depression by Inhibiting Microglial Activation and Neuroinflammation via HMGB1/TLR4/NF‐κB and TNF‐α/TNFR1/NF‐κB Pathways. British Journal of Pharmacology, 177, 5224-5245.
https://doi.org/10.1111/bph.15261
[37]  Molagoda, I.M.N., Lee, K.T., Choi, Y.H., Jayasingha, J.A.C.C. and Kim, G. (2021) Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB‐ and ER Stress‐Induced Ca2+ Accumulation and Mitochondrial ROS Production. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 1246491.
https://doi.org/10.1155/2021/1246491
[38]  Liu, Y.C. and Yin, S.H. (2021) Research Progress on Inflammatory Factors and Related Signaling Pathways in Inner Ear Diseases. Chinese Journal of Otology, 19, 506-510.
[39]  Boecking, B., Klasing, S., Walter, M., Brueggemann, P., Nyamaa, A., Rose, M., et al. (2022) Vascular-Metabolic Risk Factors and Psychological Stress in Patients with Chronic Tinnitus. Nutrients, 14, Article 2256.
https://doi.org/10.3390/nu14112256
[40]  Themann, C.L. and Masterson, E.A. (2019) Occupational Noise Exposure: A Review of Its Effects, Epidemiology, and Impact with Recommendations for Reducing Its Burden. The Journal of the Acoustical Society of America, 146, 3879-3905.
https://doi.org/10.1121/1.5134465
[41]  Dai, C.Y., Lin, Y., Su, T.H., et al. (2023) Effects of Low-Intensity Noise Exposure on Temporal Resolution in Guinea Pigs. Chinese Journal of Otology, 21, 378-384.
[42]  Tang, W., Ling, S.Y., Xiang, P., et al. (2023) Comparison of Different White Noise Intensities in Establishing Animal Models of Noise-Induced Tinnitus and Effects on GAP-43 Expression in Auditory Cortex. Journal of Youjiang Medical University for Nationalities, 4, 259-262, 286.
[43]  Deng, A.C., Sun, W., Li, Q., et al. (2018) Effects of Noise Exposure on Auditory Cortex Excitability and Expression of GABA and NMDA Receptors in Rats. Journal of Audiology and Speech Pathology, 26, 513-517.
[44]  Liu, Y.H., Jiang, Y.H., Zhang, Z.R., et al. (2022) Establishment and Evaluation of an Animal Model of Military Aviation Noise-Induced Hidden Hearing Loss. Chinese Journal of Otology, 20, 620-625.
[45]  Fernandez, K.A., Guo, D., Micucci, S., De Gruttola, V., Liberman, M.C. and Kujawa, S.G. (2020) Noise-Induced Cochlear Synaptopathy with and without Sensory Cell Loss. Neuroscience, 427, 43-57.
https://doi.org/10.1016/j.neuroscience.2019.11.051
[46]  Lin, S.T., Luo, L.X., Hu, Y.L., et al. (2024) Effects of Roflupram on NLRP3, Caspase-1, IL-1β, and TNF-α in Hippocampus of Noise-Induced Tinnitus Mice. China Medical Herald, 21, 1-5.
[47]  Peng, X., Mao, Y., Liu, Y., Dai, Q., Tai, Y., Luo, B., et al. (2024) Microglial Activation in the Lateral Amygdala Promotes Anxiety‐Like Behaviors in Mice with Chronic Moderate Noise Exposure. CNS Neuroscience & Therapeutics, 30, e14674.
https://doi.org/10.1111/cns.14674
[48]  Xu, M.Y. (2021) Semi-Quantitative Study of Cerebral Oxygen Metabolism in Mice Using Relaxation-Calibrated Functional MRI. Ph.D. Thesis, University of Chinese Academy of Sciences.
[49]  Longenecker, R.J., Gu, R., Homan, J. and Kil, J. (2020) A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Frontiers in Neuroscience, 14, Article 561185.
https://doi.org/10.3389/fnins.2020.561185
[50]  Longenecker, R.J., Gu, R., Homan, J. and Kil, J. (2021) Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Frontiers in Molecular Neuroscience, 14, Article 715952.
https://doi.org/10.3389/fnmol.2021.715952
[51]  Song, A., Cho, G., Vijayakumar, K.A., Moon, C., Ang, M.J., Kim, J., et al. (2021) Neuroprotective Effect of Valproic Acid on Salicylate-Induced Tinnitus. International Journal of Molecular Sciences, 23, Article 23.
https://doi.org/10.3390/ijms23010023
[52]  Zhang, W., Peng, Z., Yu, S., Song, Q., Qu, T., He, L., et al. (2020) Loss of Cochlear Ribbon Synapse Is a Critical Contributor to Chronic Salicylate Sodium Treatment-Induced Tinnitus without Change Hearing Threshold. Neural Plasticity, 2020, Article ID: 3949161.
https://doi.org/10.1155/2020/3949161
[53]  Cui, W., Wang, H., Cheng, Y., Ma, X., Lei, Y., Ruan, X., et al. (2019) Long-Term Treatment with Salicylate Enables NMDA Receptors and Impairs AMPA Receptors in C57BL/6J Mice Inner Hair Cell Ribbon Synapse. Molecular Medicine Reports, 19, 51-58.
https://doi.org/10.3892/mmr.2018.9624
[54]  Zuo, J., Li, T., Li, Y.L., et al. (2021) Changes of GABARAP Expression in Auditory Cortex of Rats Induced by Sodium Salicylate. Chinese Journal of Otology, 19, 630-635.
[55]  Wu, C., Bao, W., Yi, B., Wang, Q., Wu, X., Qian, M., et al. (2019) Increased Metabolic Activity and Hysteretic Enhanced GABAA Receptor Binding in a Rat Model of Salicylate-Induced Tinnitus. Behavioural Brain Research, 364, 348-355.
https://doi.org/10.1016/j.bbr.2019.02.037
[56]  Witkin, J.M., Lippa, A., Smith, J.L., Cook, J.M. and Cerne, R. (2022) Can Gabakines Quiet the Noise? The GABAA Receptor Neurobiology and Pharmacology of Tinnitus. Biochemical Pharmacology, 201, Article ID: 115067.
https://doi.org/10.1016/j.bcp.2022.115067
[57]  Xiao, Q.W., Zuo, J., Ge, J.L., et al. (2020) Expression of TNF-α and IL-1β in Hippocampus of Rats with Salicylate-Induced Tinnitus. Journal of Audiology and Speech Pathology, 28, 540-544.
[58]  Kenmochi, M., Ochi, K., Kinoshita, H., Miyamoto, Y. and Koizuka, I. (2021) The Effect of Systemic Administration of Salicylate on the Auditory Cortex of Guinea Pigs. PLOS ONE, 16, e0259055.
https://doi.org/10.1371/journal.pone.0259055
[59]  Ponsaerts, L., Alders, L., Schepers, M., de Oliveira, R.M.W., Prickaerts, J., Vanmierlo, T., et al. (2021) Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines, 9, Article 703.
https://doi.org/10.3390/biomedicines9070703
[60]  Ma, D.X., Yan, X.J., Liu, F.G., et al. (2024) Construction of Curcumin and EGCG co-Delivery Liposomes and Their Effects on Neuroinflammation. Journal of Food Science and Technology, 42, 32-45.
[61]  Yan, M., Zhang, L., Zhang, L.L., et al. (2023) Effects of Intranasal Administration of Triptolide Liposomes on Cognitive Impairment Caused by Central Neuroinflammation in Mice. China Journal of Chinese Materia Medica, 48, 2426-2434.
[62]  Zhang, Z.J. (2020) Neuroprotective Effects and Mechanisms of Activating GABAergic Neurons by Optogenetics in AD Models. Ph.D. Thesis, Zhengzhou University.
[63]  Xu, J., Guo, S., Xue, R., Xiao, L., Kou, J., Liu, Y., et al. (2021) Adalimumab Ameliorates Memory Impairments and Neuroinflammation in Chronic Cerebral Hypoperfusion Rats. Aging, 13, 14001-14014.
https://doi.org/10.18632/aging.203009
[64]  Liu, Y., Zhang, F., Sun, Q. and Liang, L. (2023) Adalimumab Combined with Erythropoietin Improves Recovery from Spinal Cord Injury by Suppressing Microglial M1 Polarization-Mediated Neural Inflammation and Apoptosis. Inflammopharmacology, 31, 887-897.
https://doi.org/10.1007/s10787-022-01090-z
[65]  Li, Y., Fan, H., Ni, M., Zhang, W., Fang, F., Sun, J., et al. (2022) Etanercept Reduces Neuron Injury and Neuroinflammation via Inactivating C-Jun N-Terminal Kinase and Nuclear Factor-κB Pathways in Alzheimer’s Disease: An in Vitro and in Vivo Investigation. Neuroscience, 484, 140-150.
https://doi.org/10.1016/j.neuroscience.2021.11.001
[66]  Gocmez, S.S., Yazir, Y., Gacar, G., Demirtaş Şahin, T., Arkan, S., Karson, A., et al. (2020) Etanercept Improves Aging-Induced Cognitive Deficits by Reducing Inflammation and Vascular Dysfunction in Rats. Physiology & Behavior, 224, Article ID: 113019.
https://doi.org/10.1016/j.physbeh.2020.113019
[67]  Ou, W., Yang, J., Simanauskaite, J., Choi, M., Castellanos, D.M., Chang, R., et al. (2021) Biologic TNF-α Inhibitors Reduce Microgliosis, Neuronal Loss, and Tau Phosphorylation in a Transgenic Mouse Model of Tauopathy. Journal of Neuroinflammation, 18, Article No. 312.
https://doi.org/10.1186/s12974-021-02332-7
[68]  Foiadelli, T., Santangelo, A., Costagliola, G., Costa, E., Scacciati, M., Riva, A., et al. (2023) Neuroinflammation and Status Epilepticus: A Narrative Review Unraveling a Complex Interplay. Frontiers in Pediatrics, 11, Article 1251914.
https://doi.org/10.3389/fped.2023.1251914
[69]  Sönmez, H.E., Savaş, M., Aliyeva, B., Deniz, A., Güngör, M., Anık, Y., et al. (2023) The Effect of Interleukin-1 Antagonists on Brain Volume and Cognitive Function in Two Patients with Megalencephalic Leukoencephalopathy with Subcortical Cysts. Pediatric Neurology, 144, 72-77.
https://doi.org/10.1016/j.pediatrneurol.2023.04.008
[70]  Thaler, F.S., Zimmermann, L., Kammermeier, S., et al. (2021) Rituximab Treatment and Long-Term Outcome of Patients with Autoimmune Encephalitis: Real-World Evidence from the Generate Registry. Neurology Neuroimmunology & Neuroinflammation, 8, e1088.
[71]  Bennett, J.L., Fujihara, K., Kim, H.J., Marignier, R., O’Connor, K.C., Sergott, R.C., et al. (2023) SAkuraBONSAI: Protocol Design of a Novel, Prospective Study to Explore Clinical, Imaging, and Biomarker Outcomes in Patients with AQP4-IgG-Seropositive Neuromyelitis Optica Spectrum Disorder Receiving Open-Label Satralizumab. Frontiers in Neurology, 14, Article 1114667.
https://doi.org/10.3389/fneur.2023.1114667

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133