全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Surface Complexation Model to 63Ni Sorption to Selected Granitic Rocks and Minerals: Sorption at Varying pH

DOI: 10.4236/gep.2025.134015, PP. 269-294

Keywords: Surface Complexation, Sorption, Granitic Materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

The immobilisation of radionuclides in groundwater environments cannot be explained solely by the empirical models. These empirical models are not sensitive to the varying conditions that are found in nature. Sorption has been shown to be very sensitive to pH, Eh and ionic strength of the solution in which the radionuclides are found. Batch sorption experiments at different ionic strengths were conducted and LogK constants for the sorption processes were determined. JChess Geochemical code was used to compare experimentally and predicted Log K constants obtained from surface complexation reactions with different granitic rock samples. For pH dependent sorption, 1 × 105 mol·dm3 solutions of NiCl2 were prepared, and the pH was adjusted from 4 to 11, with intervals of 0.6 to 0.8 on the pH scale using NaOH (aq) and HCl (aq). Different concentrations of pH adjusting solutions were made from very weak to very strong acid or base. Sample separation was performed and counting was performed for Ni using the scintillation counter. Packard TRI-CARB 2750 TR/LL Liquid Scintillation Counter: Used for Ni sorption studies, counting from 0 to 67 keV to 2σ. Results showed varying sorption properties from one granitic mineral to the other. There was no effect of ionic strength on the sorption of Ni to Muscovite Mica (MM). Varying pH sorption isotherms for Ni sorption to Orthoclase Feldspar, showed experimental data and modelled matched for monodentate and bi dentate sorption using the same experimental conditions, modelling done assuming mono and bidentate complex formation. The following conclusions can be made after studying varying pH sorption profiles of selected granitic rocks and mineral in different NaCl concentrations, using different models. Ni sorption is suppressed in the presence of NaCl, due to competition for the sorption sites.

References

[1]  Allard, B., Beall, G. W., & Krajewski, T. (1980). The Sorption of Actinides in Igneous Rocks. Nuclear Technology, 49, 474-480.
https://doi.org/10.13182/nt80-a17695
[2]  Allison, S. (2004). Investigating Inorganic Colloids in the Near Field of a Waste Repository. Doctoral Thesis, Loughborough University, Department of Chemistry (Radiochemistry group).
[3]  Anderson, E. B., Rogozin, Y. M., Smirnova, E. A., Bryzgalova, R. V., Andreeva, N. R., Malimonova, S. I. et al. (2007). Sorption-Barrier Properties of Granitoids and Andesite-Basaltic Metavolcanites with Respect to Am(III) and Pu(IV): 1. Absorption of Am and Pu from Groundwater on Monolithic Samples of Granitoids and Andesite-Basaltic Metavolcanites. Radiochemistry, 49, 305-312.
https://doi.org/10.1134/s1066362207030186
[4]  Andersson, J. (2008). Introduction of the Safety Case. Presentation at the Third FUNMIG Training Course, Barcelona.
[5]  Andersson, K. (1988). SKI Project 90: Chemical Data. Swedish Nuclear Power Inspectorate Report, SKI-TR-91-21.
[6]  Argonne National Laboratory EVS (2005). Human Health Fact Sheet, August 2005.
[7]  Australian Government (2023). Department of the Environment and Water Resources 2007-09-27.
[8]  Baston, G. M. N., Berry, J. A., Bond, K. A., Boult, K. A., Brownsword, M., & Linklater, C. M. (1994). Effects of Cellulosic Degradation Products on Uranium Sorption in the Geosphere. Journal of Alloys and Compounds, 213, 475-480.
https://doi.org/10.1016/0925-8388(94)90965-2
[9]  Bernard, N. (1995). Adsorption of Radionuclides on Minerals. Studies Illustrating the Effect of Solid Phase Selectivity and of Mechanisms Controlling Sorption Processes. Oak Ridge Institute for Science and Education.
[10]  Bradbury, M. H., & Baeyens, B. (2009). Sorption Modelling on Illite Part I: Titration Measurements and the Sorption of Ni, Co, Eu and Sn. Geochimica et Cosmochimica Acta, 73, 990-1003.
https://doi.org/10.1016/j.gca.2008.11.017
[11]  Chardon, E. S., Bosbach, D., Bryan, N. D., Lyon, I. C., Marquardt, C., Römer, J. et al. (2008). Reactions of the Feldspar Surface with Metal Ions: Sorption of Pb(II), U(VI) and Np(V), and Surface Analytical Studies of Reaction with Pb(II) and U(VI). Geochimica et Cosmochimica Acta, 72, 288-297.
https://doi.org/10.1016/j.gca.2007.10.026
[12]  Cresser, M., Killham, K., & Edwards, T. (1993). Soil Chemistry and Its Applications. Cambridge University Press.
https://doi.org/10.1017/cbo9780511622939
[13]  Dähn, R., Scheidegger, A. M., Manceau, A., Schlegel, M. L., Baeyens, B., Bradbury, M. H. et al. (2003). Structural Evidence for the Sorption of Ni(II) Atoms on the Edges of Montmorillonite Clay Minerals: A Polarized X-Ray Absorption Fine Structure Study. Geochimica et Cosmochimica Acta, 67, 1-15.
https://doi.org/10.1016/s0016-7037(02)01005-0
[14]  Ebong, F. S., & Nick, E. (2008). Modelling the Sorption of Nickel to Granite and Its Constituent Minerals. In NRC7-Seventh International Conference on Nuclear and Radiochemistry Budapest Hungary (pp. 134-138).
[15]  Ebong, F. S., & Nick, E. (2012). Modelling the Sorption of 63Ni to Granitic Materials: Application of the Component Additive Model. Journal of Environmental Science and Engineering B, 1, 281-292.
[16]  Ebong, F.S., & Nick, E. (2011). Sorption of Ni and Eu in a Multi-Element System. Journal of Materials Science and Engineering B, 1, 504-515.
https://doi.org/10.17265/2161-6221/2011.09.015
[17]  Everett, A. J. (1998). Adsorption of Metals by Geomedia-Data Analysis Modelling Controlling Factors and Related Issues. Battelle, Pacific Northwest Laboratory.
[18]  Goldberg, S., Criscenti, L. J., Turner, D. R., Davis, J. A., & Cantrell, K. J. (2007). Adsorption-Desorption Processes in Subsurface Reactive Transport Modeling. Vadose Zone Journal, 6, 407-435.
https://doi.org/10.2136/vzj2006.0085
[19]  Guillaumont, R. (1994). Radiochemical Approaches to the Migration of Elements from a Radwaste Repository. Radiochimica Acta, 66, 231-242.
https://doi.org/10.1524/ract.1994.6667.s1.231
[20]  Guo, Z., Li, Y., & Wu, W. (2010). Sorption of U(VI) on Goethite: Effects of Ph, Ionic Strength, Phosphate, Carbonate and Fulvic Acid. Applied Radiation and Isotopes, 67, 996-1000.
https://doi.org/10.1016/j.apradiso.2009.02.001
[21]  Hans-Jurgen, B., Graf, K., & Kappl, M. (2004). Physics and Chemistry of Interfaces. Wiley Inter-Science.
[22]  Hayes, K. F., & Katz, L. E. (1996). Application of X-Ray Absorption Spectroscopy for Surface Complexation Modeling of Metal Ion Sorption. In P. V. Brady (Ed.), Physics and Chemistry of Mineral Surfaces (pp. 147-223). CRC Press.
https://doi.org/10.1201/9781003068945-3
[23]  Hering, J. G., & Kraemer, S. (1994). Kinetics of Complexation Reactions at Surfaces and in Solution: Implications for Enhanced Radionuclide Migration. Radiochimica Acta, 66, 63-72.
https://doi.org/10.1524/ract.1994.6667.special-issue.63
[24]  Higgo, J. J. W. (2007). Review of Sorption Data Application Applicable to the Geological Environments of Interest for the Deep Disposal of ILW and LLW in the UK. Nirex.
[25]  Hölttä, P., Siitari-Kauppi, Μ., Lindberg, Α., & Hautojärvi, A. (1998). Na, Ca and Sr Retardation on Crushed Crystalline Rock. Radiochimica Acta, 82, 279-286.
http://www.mindat.org
https://doi.org/10.1524/ract.1998.82.special-issue.279
[26]  Jedináková-Křižová, V. (1998). Migration of Radionuclides in the Enviroment. Journal of Radioanalytical and Nuclear Chemistry, 229, 13-18.
https://doi.org/10.1007/bf02389439
[27]  Kanungo, S. B. (1994). Adsorption of Cations on Hydrous Oxides of Iron: II. Adsorption of Mn, Co, Ni, and Zn onto Amorphous FeOOH from Simple Electrolyte Solutions as Well as from a Complex Electrolyte Solution Resembling Seawater in Major Ion Content. Journal of Colloid and Interface Science, 162, 93-102.
https://doi.org/10.1006/jcis.1994.1013
[28]  Knol, R. J. J., de Bruin, K., de Jong, J., van Eck-Smit, B. L. F., & Booij, J. (2008). In vitro and ex vivo Storage Phosphor Imaging of Short-Living Radioisotopes. Journal of Neuroscience Methods, 168, 341-357.
https://doi.org/10.1016/j.jneumeth.2007.10.028
[29]  Kraepiel, A. M. L., Keller, K., & Morel, F. M. M. (1999). A Model for Metal Adsorption on Montmorillonite. Journal of Colloid and Interface Science, 210, 43-54.
https://doi.org/10.1006/jcis.1998.5947
[30]  L’Annunziata, M. F. (2004). Handbook of Radioactivity Analysis (2nd Ed.). Academic Press.
https://doi.org/10.1016/B978-0-12-436603-9.X5000-5
[31]  Lützenkirchen, J., & Behra, P. (1996). On the Surface Precipitation Model for Cation Sorption at the (Hydr)Oxide Water Interface. Aquatic Geochemistry, 1, 375-397.
https://doi.org/10.1007/bf00702740
[32]  Mahé, M., Heintz, J., Rödel, J., & Reynders, P. (2008). Cracking of Titania Nanocrystalline Coatings. Journal of the European Ceramic Society, 28, 2003-2010.
https://doi.org/10.1016/j.jeurceramsoc.2008.02.002
[33]  Maslova, M. V., Gerasimova, L. G., & Forsling, W. (2004). Surface Properties of Cleaved Mica. Colloid Journal, 66, 322-328.
https://doi.org/10.1023/b:coll.0000030843.30563.c9
[34]  McKinley, I. G., & Hadermann, J. (1984). Radionuclide Sorption Data Base for Swiss Safety Assessment. Nagra Technical Report NTB-84-40, Nagra, Baden Switzerland.
[35]  Mellado, J., Tarancón, A., García, J. F., Rauret, G., & Warwick, P. (2005). Combination of Chemical Separation and Data Treatment for 55Fe, 63Ni, 99Tc, 137Cs and 90Sr/90Y Activity Determination in Radioactive Waste by Liquid Scintillation. Applied Radiation and Isotopes, 63, 207-215.
https://doi.org/10.1016/j.apradiso.2005.03.003
[36]  Muuronen, S., Kämäräinen, E., Jaakkola, T., Pinnioja, S., & Lindberg, A. (1985). Sorption and Diffusion of Radionuclides in Rock Matrix and Natural Fracture Surfaces Studied by Autoradiography. MRS Proceedings, 50, 747-754.
https://doi.org/10.1557/proc-50-747
[37]  Ohnuki, T. (1994). Sorption Characteristics of Strontium on Sandy Soils and Their Components. Radiochimica Acta, 64, 237-246.
https://doi.org/10.1524/ract.1994.64.34.237
[38]  Papelis, C. (2001). Cation and Anion Sorption on Granite from the Project Shoal Test Area, near Fallon, Nevada, USA. Advances in Environmental Research, 5, 151-166.
https://doi.org/10.1016/s1093-0191(00)00053-8
[39]  Rumynin, V. G., Konosavsky, P. K., & Hoehn, E. (2005). Experimental and Modeling Study of Adsorption-Desorption Processes with Application to a Deep-Well Injection Radioactive Waste Disposal Site. Journal of Contaminant Hydrology, 76, 19-46.
https://doi.org/10.1016/j.jconhyd.2004.07.008
[40]  Sarah, S. (1994). First Year PhD Report (p. 87). Environmental Radiochemistry Group, Department of Chemistry, Loughborough University.
[41]  Scheidegger, A. M., Sparks, D. L., & Fendorf, M. (1996). Mechanisms of Nickel Sorption on Pyrophyllite: Macroscopic and Microscopic Approaches. Soil Science Society of America Journal, 60, 1763-1772.
https://doi.org/10.2136/sssaj1996.03615995006000060022x
[42]  Scheuerer, C., Schupfner, R., & Schüttelkopf, H. (1995). A Very Sensitive LSC Procedure to Determine Ni-63 in Environmental Samples, Steel and Concrete. Journal of Radioanalytical and Nuclear Chemistry Articles, 193, 127-131.
https://doi.org/10.1007/bf02041926
[43]  Schindler, P. W., Fürst, B., Dick, R., & Wolf, P. U. (1976). Ligand Properties of Surface Silanol Groups. I. Surface Complex Formation with Fe3+, Cu2+, Cd2+, and Pb2+. Journal of Colloid and Interface Science, 55, 469-475.
https://doi.org/10.1016/0021-9797(76)90057-6
[44]  Sparks, D. L. (2002). Environmental Soil Chemistry (2nd Ed.). University of Delaware.
[45]  Sposito, G. (1984). The Surface Chemistry of Soils. Oxford University Press.
[46]  Stumm, W. (1995). The Inner-Sphere Surface Complex: A Key to Understanding Surface Reactivity. Advances in Chemistry, 244, 1-32.
https://doi.org/10.1021/ba-1995-0244.ch001
[47]  Ticknor, Κ. V. (1994). Sorption of Nickel on Geological Materials. Radiochimica Acta, 66, 341-348.
https://doi.org/10.1524/ract.1994.6667.s1.341
[48]  Treado, P. A., & Chagnon, P. R. (1961). Neutron Capture Gamma-Ray Spectra of the Nickel Isotopes. Physical Review, 121, 1734-1739.
https://doi.org/10.1103/physrev.121.1734
[49]  Tripathy, S. S., Bersillon, J., & Gopal, K. (2006). Adsorption of Cd2+ on Hydrous Manganese Dioxide from Aqueous Solutions. Desalination, 194, 11-21.
https://doi.org/10.1016/j.desal.2005.10.023
[50]  United States Environmental Protection Agency (USEPA) (1999) The Kd Model, Measurement Methods, and Application of Chemical Reaction Codes Volume 1.
[51]  van der Lee, J. (2003). JCHESS Version 2 Release 3. Centre de Géosciences École Nationale Supérieure des Mines de Paris.
[52]  Vandergraaf, T. T., Drew, D. J., Archambault, D., & Ticknor, K. V. (1997). Transport of Radionuclides in Natural Fractures: Some Aspects of Laboratory Migration Experiments. Journal of Contaminant Hydrology, 26, 83-95.
https://doi.org/10.1016/s0169-7722(96)00060-5
[53]  Yoshida, T., & Suzuki, M. (2006). Migration of Strontium and Europium in Quartz Sand Column in the Presence of Humic Acid: Effect of Ionic Strength. Journal of Radioanalytical and Nuclear Chemistry, 270, 363-368.
https://doi.org/10.1007/s10967-006-0358-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133