全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Improved Water Vapor Trajectory Clustering Method and Its Application Analysis

DOI: 10.4236/ojapps.2025.154072, PP. 1033-1049

Keywords: HYSPLIT, Improved Method, Water Vapor Trajectory, Cluster Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

In atmospheric water cycle research, water vapor trajectory analysis is a crucial tool for understanding the sources and transport pathways of precipitation water vapor. As a mainstream Lagrangian trajectory model, the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model provides water vapor trajectory data. However, its built-in trajectory clustering method has drawbacks, including long computation time and the loss of source point information. To address these issues, this study proposes an improved clustering method that incorporates a group-based computational optimization strategy and a weighted trajectory clustering approach to enhance computational efficiency and better capture dense water vapor source information. The study focuses on the cloud water resource high-value areas in Northwest China during the spring seasons from 2005 to 2015. Using the HYSPLIT model, backward water vapor trajectory tracking was conducted, followed by trajectory clustering analysis. The results demonstrate that the improved method reduces computational time costs, with experiments demonstrating an optimal reduction of up to 95.8%, while still preserving key source point information along water vapor transport pathways. Additionally, it enhances the identification of major water vapor transport routes. This improved method provides a more efficient and accurate data processing approach for large-scale water vapor trajectory analysis, offering valuable support for studying water vapor pathways in the atmospheric water cycle.

References

[1]  Whiteman, D.N., Rush, K., Rabenhorst, S., Welch, W., Cadirola, M., McIntire, G., et al. (2010) Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Journal of Atmospheric and Oceanic Technology, 27, 1781-1801.
https://doi.org/10.1175/2010jtecha1391.1
[2]  Ma, J. and Guo, W. (2025) A Coupling Model for Global Average Water Vapor and Temperature Change. Climate Dynamics, 63, Article No. 141.
https://doi.org/10.1007/s00382-025-07638-3
[3]  Feng, L. and Zhou, T. (2012) Water Vapor Transport for Summer Precipitation over the Tibetan Plateau: Multidata Set Analysis. Journal of Geophysical Research: Atmospheres, 117, D20114.
https://doi.org/10.1029/2011jd017012
[4]  Chen, Y., Wen, J., Liu, R., Zhou, J. and Liu, W. (2022) The Characteristics of Water Vapor Transport and Its Linkage with Summer Precipitation over the Source Region of the Three Rivers. Journal of Hydrometeorology, 23, 441-455.
[5]  Park, C., Son, S. and Kim, H. (2021) Distinct Features of Atmospheric Rivers in the Early versus Late East Asian Summer Monsoon and Their Impacts on Monsoon Rainfall. Journal of Geophysical Research: Atmospheres, 126, e2020JD033537.
https://doi.org/10.1029/2020jd033537
[6]  Gimeno, L., Stohl, A., Trigo, R.M., Dominguez, F., Yoshimura, K., Yu, L., et al. (2012) Oceanic and Terrestrial Sources of Continental Precipitation. Reviews of Geophysics, 50, RG4003.
https://doi.org/10.1029/2012rg000389
[7]  Brubaker, K.L., Entekhabi, D. and Eagleson, P.S. (1993) Estimation of Continental Precipitation Recycling. Journal of Climate, 6, 1077-1089.
https://doi.org/10.1175/1520-0442(1993)006<1077:eocpr>2.0.co;2
[8]  Eltahir, E.A.B. and Bras, R.L. (1994) Precipitation Recycling in the Amazon Basin. Quarterly Journal of the Royal Meteorological Society, 120, 861-880.
https://doi.org/10.1002/qj.49712051806
[9]  Martinez, J.A. and Dominguez, F. (2014) Sources of Atmospheric Moisture for the La Plata River Basin. Journal of Climate, 27, 6737-6753.
https://doi.org/10.1175/jcli-d-14-00022.1
[10]  Stohl, A., Forster, C., Frank, A., Seibert, P. and Wotawa, G. (2005) Technical Note: The Lagrangian Particle Dispersion Model FLEXPART Version 6.2. Atmospheric Chemistry and Physics, 5, 2461-2474.
https://doi.org/10.5194/acp-5-2461-2005
[11]  Sun, B. and Wang, H. (2014) Moisture Sources of Semiarid Grassland in China Using the Lagrangian Particle Model Flexpart. Journal of Climate, 27, 2457-2474.
https://doi.org/10.1175/jcli-d-13-00517.1
[12]  Dominguez, F., Kumar, P., Liang, X. and Ting, M. (2006) Impact of Atmospheric Moisture Storage on Precipitation Recycling. Journal of Climate, 19, 1513-1530.
https://doi.org/10.1175/jcli3691.1
[13]  Worden, J., Bowman, K., Noone, D., Beer, R., Clough, S., Eldering, A., et al. (2006) Tropospheric Emission Spectrometer Observations of the Tropospheric HDO/H2O Ratio: Estimation Approach and Characterization. Journal of Geophysical Research: Atmospheres, 111, D16309.
https://doi.org/10.1029/2005jd006606
[14]  Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D. and Ngan, F. (2015) NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96, 2059-2077.
https://doi.org/10.1175/bams-d-14-00110.1
[15]  Dorling, S.R., Davies, T.D. and Pierce, C.E. (1992) Cluster Analysis: A Technique for Estimating the Synoptic Meteorological Controls on Air and Precipitation Chemistry—Method and Applications. Atmospheric Environment. Part A. General Topics, 26, 2575-2581.
https://doi.org/10.1016/0960-1686(92)90110-7
[16]  Xin, F., Peng, D., Liu, R. and Liu, S.C. (2022) Moisture Sources for the Weather Pattern Classified Extreme Precipitation in the First Rainy Season over South China. International Journal of Climatology, 42, 6027-6041.
https://doi.org/10.1002/joc.7576
[17]  Lolis, C. and Türkeş, M. (2016) Atmospheric Circulation Characteristics Favouring Extreme Precipitation in Turkey. Climate Research, 71, 139-153.
https://doi.org/10.3354/cr01433
[18]  Agarwal, A., Maheswaran, R., Sehgal, V., Khosa, R., Sivakumar, B. and Bernhofer, C. (2016) Hydrologic Regionalization Using Wavelet-Based Multiscale Entropy Method. Journal of Hydrology, 538, 22-32.
https://doi.org/10.1016/j.jhydrol.2016.03.023
[19]  Draxier, P.R. and Hess, G.D. (1998) An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion and Deposition. Australian Meteorological Maga-zine, 47, 295-308.
[20]  Shi, Y., Jiang, Z., Liu, Z. and Li, L. (2020) A Lagrangian Analysis of Water Vapor Sources and Pathways for Precipitation in East China in Different Stages of the East Asian Summer Monsoon. Journal of Climate, 33, 977-992.
https://doi.org/10.1175/jcli-d-19-0089.1
[21]  Bosilovich, M.G., Schubert, S.D. and Walker, G.K. (2005) Global Changes of the Water Cycle Intensity. Journal of Climate, 18, 1591-1608.
https://doi.org/10.1175/JCLI3357.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133