全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of the Analgesic and Anti-Inflammatory Activity of the Decoction and Hydroethanolic Extract of Ximenia americana L. (Olacaceae) Bark

DOI: 10.4236/pp.2025.164008, PP. 105-123

Keywords: Ximenia americana, Analgesic, Anti-Inflammatory, Potency, Efficacy

Full-Text   Cite this paper   Add to My Lib

Abstract:

In traditional medicine, the decoction of Ximenia americana bark is employed for the treatment of various ailments; however, there has been a paucity of research evaluating its pharmacological properties. The objective of this study was to compare the analgesic and anti-inflammatory properties of the decoction (DXA) and a hydroethanol extract (EHEXA) of Ximenia americana. The experimental design encompassed assessments of analgesic activity, utilising contortion and formaldehyde tests on laboratory animals, and an evaluation of anti-inflammatory efficacy through a carrageenan test. The results demonstrated that both extracts, at doses ranging from 0.25 to 150 mg/kg, exhibited a dose-dependent inhibition of contortions. The Emax obtained was 100% for both extracts, which was identical to the Emax of paracetamol and tramadol. The ED50 values for tramadol, DXA, EHEXA and paracetamol were determined to be 2.81, 2.84, 7.94 and 19.05 mg/kg, respectively. In the neurogenic phase of the formaldehyde test, DXA and EHEXA demonstrated significant pain inhibition of 39% to 54% and 38% to 64%, respectively, at doses ranging from 10 to 150 mg/kg. In the inflammatory phase of the formaldehyde test, DXA and EHEXA demonstrated pain inhibition rates of 55% - 71% and 65% - 81%, respectively, at doses ranging from 10 to 150 mg/kg. In the carrageenan test, EHEXA demonstrated transient anti-oedematous activity. This was observed in the 1st hour at doses of 25, 50 and 100 mg/kg, with significant inhibition of 61%, 47% and 46%, respectively. Conversely, DXA manifested delayed anti-oedema activity, with 36% inhibition of oedema observed from the 3rd to the 5th hour, at a dose of 10 mg/kg. It is hypothesised that EHEXA is richer in compounds with anti-oedematous properties. In conclusion, Ximenia americana could have a much more pronounced analgesic activity at the same doses as the anti-inflammatory effect.

References

[1]  Chambers, C.T., Dol, J., Tutelman, P.R., Langley, C.L., Parker, J.A., Cormier, B.T., et al. (2024) The Prevalence of Chronic Pain in Children and Adolescents: A Systematic Review Update and Meta-Analysis. Pain, 165, 2215-2234.
https://doi.org/10.1097/j.pain.0000000000003267
[2]  Bindu, S., Mazumder, S. and Bandyopadhyay, U. (2020) Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochemical Pharmacology, 180, Article 114147.
https://doi.org/10.1016/j.bcp.2020.114147
[3]  Kim, K., Brar, P., Jakubowski, J., Kaltman, S. and Lopez, E. (2009) The Use of Corticosteroids and Nonsteroidal Antiinflammatory Medication for the Management of Pain and Inflammation after Third Molar Surgery: A Review of the Literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107, 630-640.
https://doi.org/10.1016/j.tripleo.2008.11.005
[4]  Degenhardt, L., Grebely, J., Stone, J., Hickman, M., Vickerman, P., Marshall, B.D.L., et al. (2019) Global Patterns of Opioid Use and Dependence: Harms to Populations, Interventions, and Future Action. The Lancet, 394, 1560-1579.
https://doi.org/10.1016/s0140-6736(19)32229-9
[5]  Lanas, Á., Carrera-Lasfuentes, P., Arguedas, Y., García, S., Bujanda, L., Calvet, X., et al. (2015) Risk of Upper and Lower Gastrointestinal Bleeding in Patients Taking Nonsteroidal Anti-Inflammatory Drugs, Antiplatelet Agents, or Anticoagulants. Clinical Gastroenterology and Hepatology, 13, 906-912.E2.
https://doi.org/10.1016/j.cgh.2014.11.007
[6]  Soro, T.Y., Traoré, F., Datte, J.Y. and Nene-Bi, A.S. (2009) Activité antipyrétique de l’extrait aqueux de Ximenia americana. Phytothérapie, 7, 297-303.
https://doi.org/10.1007/s10298-009-0507-3
[7]  World Health Organization (WHO) (2013) WHO Traditional Medicine Strategies 2014-2023.
https://www.who.int
[8]  Da Silva-Leite, K.E.S., Assreuy, A.M.S., Mendonça, L.F., Damasceno, L.E.A., de Queiroz, M.G.R., Mourão, P.A.S., et al. (2017) Polysaccharide Rich Fractions from Barks of Ximenia americana Inhibit Peripheral Inflammatory Nociception in Mice: Antinociceptive Effect of Ximenia americana Polysaccharide Rich Fractions. Revista Brasileira de Farmacognosia, 27, 339-345.
https://doi.org/10.1016/j.bjp.2016.12.001
[9]  Maikai, V.A., Kobo, P.I. and Maikai, B.V.O. (2010) Antioxidant Properties of Ximenia americana. African Journal of Biotechnology, 9, 7744-7746.
[10]  Almeida, M.L.B., Freitas, W.E.d.S., Morais, P.L.D.d., Sarmento, J.D.A. and Alves, R.E. (2016) Bioactive Compounds and Antioxidant Potential Fruit of Ximenia americana L. Food Chemistry, 192, 1078-1082.
https://doi.org/10.1016/j.foodchem.2015.07.129
[11]  Almeida, M.L.B., de Souza Freitas, W.E., de Morais, P.L.D., Sarmento, J.D.A. and Alves, R.E. (2016) Bioactive Compounds and Antioxidant Potential Fruit of Ximenia americana L. Food Chemistry, 192, 1078-1082.
https://doi.org/10.1016/j.foodchem.2015.07.129
[12]  Sarmento, J.D.A., Morais, P.L.D., Souza, F.I.D., Costa, L.R.D. and Melo, N.J.D.A. (2015) Bioactive Compounds and Antioxidant Activity of Ximenia americana Coming from Different Collection Sites. Archivos Latinoamericanos de Nutrición, 65, 263-270.
[13]  Soro, T.Y., Traore, F. and Sakande, J. (2009) Analgesic Activity of the Aqueous Extract from Ximenia americana. Comptes Rendus Biologies, 332, 371-377.
https://doi.org/10.1016/j.crvi.2008.08.022
[14]  Konate, K., Nabéré, O., Arsène, M., Souza, A., Sitar, O., Brestic, M., et al. (2018) Anti-Nociceptive and Anti-Inflammatory Properties of Polyphenol-Rich Fractions of Roots from Ximenia americana L. (Olacaceae), in Experimental Mice. International Journal of Pharmacy and Pharmaceutical Research, 12, 281-297.
https://works.bepress.com/dicko/79
[15]  Organisation for Economic Co-Operation and Development (OECD) (2018) OECD Guidelines for the Testing of Chemicals: Good Laboratory Practice. OECD Publishing.
[16]  Boolamou, B., Lapo, A., Camara, K., Assane, M., Bassene, E. and Samb, A. (2015) Activité anti-inflammatoire du décocté aqueux des écorces de racines de Morinda geminata DC (Rubiaceae). International Journal of Biological and Chemical Sciences, 8, 1871-1875.
https://doi.org/10.4314/ijbcs.v8i4.46
[17]  Seo, J., Lee, S., Elam, M.L., Johnson, S.A., Kang, J. and Arjmandi, B.H. (2014) Study to Find the Best Extraction Solvent for Use with Guava Leaves (Psidium guajava L.) for High Antioxidant Efficacy. Food Science & Nutrition, 2, 174-180.
https://doi.org/10.1002/fsn3.91
[18]  Akré, D.S.T., Kouamé, K.B., Okou, O.C., Diakité, D., Ackah, J.A.B.A. and Djaman, A.J. (2022) Tri Phytochimique et Activités Antimicrobiennes des Extraits Hydroacétoniques de Baphia Nitida (Fabaceae) sur Shigella spp et E. coli, Deux Entérobactéries Impliquées dans les Diarrhées Infantiles à Daloa, Côte d’Ivoire. European Scientific Journal ESJ, 11, 711-733.
https://doi.org/10.19044/esipreprint.11.2022.p711
[19]  Yapi, A.B., Camara, D., Coulibaly, K. and Zirihi, G.N. (2018) Étude botanique, tri phytochimique et évaluation de l’activité antifongique de l’extrait éthanolique des feuilles de Eclipta prostrata (L.) L. (Asteraceae) sur la croissance in vitro de trois souches fongiques. Journal of Applied Biosciences, 125, 12581-12589.
https://doi.org/10.4314/jab.v125i1.7
[20]  Hama Hamadou, H., et al. (2018) Criblage phytochimique et dosage des polyphénols du Detarium microcarpum Guill. et Perr. utilisé dans le traitement des maladies parasitaires au Niger.
http://www.afriquescience.net
[21]  Zimmermann, M. (1983) Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain, 16, 109-110.
https://doi.org/10.1016/0304-3959(83)90201-4
[22]  Teng, C.J. and Abbott, F.V. (1998) The Formalin Test: A Dose-Response Analysis at Three Developmental Stages. Pain, 76, 337-347.
https://doi.org/10.1016/s0304-3959(98)00065-7
[23]  Santos, A.R.S. and Calixto, J.B. (1997) Further Evidence for the Involvement of Tachykinin Receptor Subtypes in Formalin and Capsaicin Models of Pain in Mice. Neuropeptides, 31, 381-389.
https://doi.org/10.1016/s0143-4179(97)90075-5
[24]  Winter, C.A., Risley, E.A. and Nuss, G.W. (1962) Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Experimental Biology and Medicine, 111, 544-547.
https://doi.org/10.3181/00379727-111-27849
[25]  Di Rosa, M. and Sorrentino, L. (1968) The Mechanism of the Inflammatory Effect of Carrageenin. European Journal of Pharmacology, 4, 340-342.
https://doi.org/10.1016/0014-2999(68)90103-9
[26]  Delporte, C., Backhouse, N., Erazo, S., Negrete, R., Vidal, P., Silva, X., et al. (2005) Analgesic-Antiinflammatory Properties of Proustia pyrifolia. Journal of Ethnopharmacology, 99, 119-124.
https://doi.org/10.1016/j.jep.2005.02.012
[27]  D’Amato, M.E., Bodner, M., Butler, J.M., Gusmão, L., Linacre, A., Parson, W., et al. (2020) Ethical Publication of Research on Genetics and Genomics of Biological Material: Guidelines and Recommendations. Forensic Science International: Reports, 2, Article 100091.
https://doi.org/10.1016/j.fsir.2020.100091
[28]  Koster, R., Anderson, E. and De Beer, E.J. (1959) Acetic Acid for Analgesic Screening. Federation Proceedings, 18, 412-417.
[29]  Dubuisson, D. and Dennis, S.G. (1977) The Formalin Test: A Quantitative Study of the Analgesic Effects of Morphine, Meperidine, and Brain Stem Stimulation in Rats and Cats. Pain, 4, 161-174.
https://doi.org/10.1016/0304-3959(77)90130-0
[30]  Hunskaar, S. and Hole, K. (1987) The Formalin Test in Mice: Dissociation between Inflammatory and Non-Inflammatory Pain. Pain, 30, 103-114.
https://doi.org/10.1016/0304-3959(87)90088-1
[31]  Kouakou-Siransy, G., Irie Nguessan, G., Dally, I., Mohou, B., Kamenan, A., Kouakou, L. and Kablan Brou, J. (2010) Étude de l’activité analgésique de l’extrait méthanolique des feuilles de Gossypium hirsutum Linn. (Malvaceae). Journal des Sciences Pharmaceutiques et Biologiques, 11, 6-12.
[32]  Azwanida, N.N. (2015) Effect of Extraction Methods on the Yield and Quality of Bioactive Compounds from Plant Materials. Journal of Analytical Methods in Chemistry, 2015, Article ID 975063.
[33]  Zia, S., Khan, M.R., Shabbir, M.A. and Aadil, R.M. (2019) Thermal Degradation of Bioactive Compounds during Drying of Plant Materials: A Review. Food Chemistry, 276, 608-618.
[34]  Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E. and Walle, U.K. (2004) High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metabolism and Disposition, 32, 1377-1382.
https://doi.org/10.1124/dmd.104.000885
[35]  Williamson, G. and Clifford, M.N. (2017) Bioavailability and Bioactivity of Polyphenols: Role of the Gut Microbiota and Metabolism. Food & Function, 8, 2042-2055.
[36]  Dewick, P.M. (2002) Metabolism of Alkaloids and Their Pharmacological Effects. In: Dewick, P.M., Ed., Medicinal Natural Products: A Biosynthetic Approach, 2nd Edition, John Wiley & Sons, Ltd., 357-402.
[37]  Koppel, N., Maini Rekdal, V. and Balskus, E.P. (2017) Chemical Transformation of Xenobiotics by the Human Gut Microbiota. Science, 356, eaag2770.
https://doi.org/10.1126/science.aag2770
[38]  Pessoa, R.T., Santos da Silva, L.Y., Alcântara, I.S., Silva, T.M., dos Santos Silva, E., da Costa, R.H.S., et al. (2024) Antinociceptive Potential of Ximenia americana L. Bark Extract and Caffeic Acid: Insights into Pain Modulation Pathways. Pharmaceuticals, 17, Article 1671.
https://doi.org/10.3390/ph17121671
[39]  Wagner, H. and Ulrich-Merzenich, G. (2009) Synergy Research: Approaching a New Generation of Phytopharmaceuticals. Phytomedicine, 16, 97-110.
https://doi.org/10.1016/j.phymed.2008.12.018
[40]  Williamson, E. (2001) Synergy and Other Interactions in Phytomedicines. Phytomedicine, 8, 401-409.
https://doi.org/10.1078/0944-7113-00060
[41]  Sharief, T.M., Mohammed Bashier, R.S. and Haroon, M.I. (2022) Phytochemical Evaluation and Uses of Ximenia americana L in Central Darfur. International Journal of Current Microbiology and Applied Sciences, 11, 353-360.
https://doi.org/10.20546/ijcmas.2022.1102.040
[42]  Sene, M., Ndiaye, M., Barboza, F.S., Sene, M., Diatta, W., Sarr, A., et al. (2017) Activité anti-inflammatoire de l’extrait aqueux des feuilles de Elaeis guineensis Jacq. (ARECACEAE) sur l’oedème aigu de la patte de rat induit par la carraghènine. International Journal of Biological and Chemical Sciences, 10, 2568-2574.
https://doi.org/10.4314/ijbcs.v10i6.13
[43]  Liu, J., Li, F. and Lu, X. (2014) Release Kinetics of Active Ingredients from Plant Extracts: The Role of Dilution and Matrix Complexity. Journal of Ethnopharmacology, 155, 123-129.
[44]  Tiwari, P. and Nayak, V. (2015) Plant Extracts: Release Kinetics and Bioavailability of Active Constituents. Journal of Applied Pharmaceutical Science, 5, 1-7.
[45]  Bellavite, P. and Signorini, A. (2002) The Emerging Science of Homeopathy: Complexity, Biodynamics, and Nanopharmacology. North Atlantic Books.
[46]  da Silva, B.A.F., Pessoa, R.T., da Costa, R.H.S., de Oliveira, M.R.C., Ramos, A.G.B., de Lima Silva, M.G., et al. (2023) Evaluation of the Antiedematogenic and Anti-Inflammatory Properties of Ximenia americana L. (Olacaceae) Bark Extract in Experimental Models of Inflammation. Biomedicine & Pharmacotherapy, 166, Article 115249.
https://doi.org/10.1016/j.biopha.2023.115249
[47]  Kimondo, J., Mutai, P., Njogu, P. and Kimwele, C. (2020) Anti-Inflammatory Activity of Selected Plants Used by the Ilkisonko Maasai, Kenya. African Journal of Pharmacology and Therapeutics, 9, 39-43.
http://journals.uonbi.ac.ke/ajpt/
[48]  Azwanida, N.N. (2015) Solvent Selection for Efficient Extraction of Bioactive Compounds from Plants. Journal of Analytical Methods in Chemistry, 2015, Article ID 975063.
[49]  Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G. and Lightfoot, D.A. (2017) Extraction of Bioactive Compounds from Plant Materials Using Different Solvents: A Review. Food Chemistry, 220, 502-509.
[50]  Taamalli, A., Arráez-Román, D., Barrajón-Catalán, E., et al. (2012) Optimization of Extraction Conditions for Phenolic Compounds from Olive Leaves. Industrial Crops and Products, 37, 82-87.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133