全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于均值方差预测与掩码全变分损失的高光谱图像超分辨率
Hyperspectral Image Super-Resolution Based on Mean Variance Prediction and Masked total Variation Loss

DOI: 10.12677/mos.2025.144316, PP. 638-648

Keywords: 超分辨率,高光谱图像,损失函数,神经网络
Super-Resolution
, Hyperspectral Image, Loss Function, Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

高光谱图像因其丰富的空间与光谱信息,在农业、遥感、环境监测等领域具有重要应用价值。然而,受成像硬件限制,其空间分辨率往往较低。因此,众多深度学习方法被提出用于高光谱图像超分辨率。然而,大多数深度学习方法是从高光谱图像中切出部分进行训练,在剩余部分图像上进行仿真,这在现实中是不适用的,但是神经网络单波段地重构图像又会导致光谱偏差。其次,在深度学习方法的损失函数中,全变分正则化作为一种常用的损失函数,旨在约束图像以使图像平滑,但该约束也会导致图像中的纹理变得模糊,导致超分辨率结果不佳。本文提出一种基于均值方差预测与波段生成的网络架构以及使用掩码全变分损失的高光谱图像超分辨率方法,通过灰度图像进行训练,在提升空间分辨率的同时有效保持光谱特征。实验表明,所提方法在PSNR、SAM指标上优于使用传统的深度学习超分辨率方法,并在光谱保真度与空间细节恢复上表现出显著优势。
Due to its rich spatial and spectral information, hyperspectral images have important application value in agriculture, remote sensing, environmental monitoring and other fields. However, limited by imaging hardware, its spatial resolution is often low. Therefore, many deep learning methods have been proposed for hyperspectral image super-resolution. However, most deep learning methods cut out part of the hyperspectral image for training and simulate on the remaining part of the image, which is not applicable in reality, but making the neural network reconstruct the image in a single band will lead to spectral deviation. Secondly, among the loss functions of deep learning methods, total variation regularization is a commonly used loss function that aims to constrain the image to smooth the image, but this constraint also causes the texture in the image to become blurred, resulting in poor super-resolution results. In this paper, we propose a hyperspectral image super-resolution method based on mean-variance prediction and band generation network architecture and masked total variation loss. By training on grayscale images, the spatial resolution is improved while the spectral features are effectively preserved. Experiments show that the proposed method is superior to the traditional deep learning super-resolution method in terms of PSNR, SAM indicators, and shows significant advantages in spectral fidelity and spatial detail recovery.

References

[1]  Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N. and Chanussot, J. (2013) Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geoscience and Remote Sensing Magazine, 1, 6-36.
https://doi.org/10.1109/mgrs.2013.2244672
[2]  Gevaert, C.M., Suomalainen, J., Tang, J. and Kooistra, L. (2015) Generation of Spectral-Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3140-3146.
https://doi.org/10.1109/jstars.2015.2406339
[3]  Pike, R., Lu, G., Wang, D., Chen, Z.G. and Fei, B. (2016) A Minimum Spanning Forest-Based Method for Noninvasive Cancer Detection with Hyperspectral Imaging. IEEE Transactions on Biomedical Engineering, 63, 653-663.
https://doi.org/10.1109/tbme.2015.2468578
[4]  Wang, Y., Chen, X., Han, Z. and He, S. (2017) Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization. Remote Sensing, 9, Article No. 1286.
https://doi.org/10.3390/rs9121286
[5]  Yang, J.C., Wright, J., Huang, T.S. and Ma, Y. (2010) Image Super-Resolution via Sparse Representation. IEEE Transactions on Image Processing, 19, 2861-2873.
https://doi.org/10.1109/tip.2010.2050625
[6]  Li, S., Jia, H., Chen, X., Li, S., Han, Z., Tang, Y., et al. (2020) Relaxed Low Tensor Train Rank Representation with Structural Smoothness for Hyperspectral Image Super-Resolution. 2020 10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Xi’an, 10-14 October 2020, 375-380.
https://doi.org/10.1109/cyber50695.2020.9279193
[7]  He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/cvpr.2016.90
[8]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-net: Convolutional Networks for Biomedical Image Segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer International Publishing, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[9]  Jiang, J., Sun, H., Liu, X. and Ma, J. (2020) Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery. IEEE Transactions on Computational Imaging, 6, 1082-1096.
https://doi.org/10.1109/tci.2020.2996075
[10]  Li, Y., Zhang, L., Dingl, C., Wei, W. and Zhang, Y. (2018) Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network. 2018 IEEE 4th International Conference on Multimedia Big Data (BigMM), Xi’an, 13-16 September 2018, 1-4.
https://doi.org/10.1109/bigmm.2018.8499097
[11]  Dong, C., Loy, C.C., He, K. and Tang, X. (2016) Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307.
https://doi.org/10.1109/tpami.2015.2439281
[12]  Li, W., Li, J., Gao, G., Deng, W., Yang, J., Qi, G., et al. (2024) Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network. IEEE Transactions on Multimedia, 1-12.
https://doi.org/10.1109/tmm.2024.3521753
[13]  Zhang, X., Zhang, Y. and Yu, F. (2024) HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution. In: European Conference on Computer Vision, Springer, 483-500.
https://doi.org/10.1007/978-3-031-73661-2_27

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133