全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Workbench的带接管封头结构有限元分析和棘轮评定
Finite Element Analysis and Ratcheting Assessment of Nozzle-Header Structures Using ANSYS Workbench

DOI: 10.12677/mos.2025.144314, PP. 617-627

Keywords: 带接管封头,棘轮效应,ASME III-5规范,RCC-MRx规范,弹性分析
Nozzle-Header Structures
, Ratcheting Effect, ASME III-5 Code, RCC-MRx Code, Elastic Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

带接管封头结构在核电站、石油化工及航空航天等关键领域作为承压设备核心部件,常处于高温、高压与循环载荷的严苛工况,其几何不连续处易产生应力集中诱发棘轮效应,威胁设备安全。国际上ASME III-5与RCC-MRx规范为主流评定依据,但工程实践多倾向低成本的弹性分析。本文以带接管椭圆封头为对象,基于ANSYS Workbench展示两规范的棘轮评定流程,对比弹性分析结果差异并提供流程模板,为工程师提供参考。通过有限元分析发现接管根部应力大,据此提取数据进行评定,结果显示ASME标准更保守。这些发现有助于更安全的设计实践,并促进高风险行业的规范合规性评估。这些发现有助于更安全的设计实践,并促进在高风险行业中进行符合规范的评估。
Nozzle-header structures, serving as core pressure-bearing components in critical fields such as nuclear power plants, petrochemical engineering, and aerospace, often operate under harsh conditions of high temperature, high pressure, and cyclic loading. Geometric discontinuities in these structures can induce stress concentration, leading to potential ratcheting effects that threaten equipment safety. Internationally, the ASME III-5 and RCC-MRx codes are the primary assessment criteria; however, engineering practices predominantly rely on cost-effective elastic analysis. This paper focuses on elliptical headers with nozzles, presenting a systematic evaluation workflow based on ANSYS Workbench for both codes. By comparing the differences in elastic analysis results and providing a process template, this study offers a practical reference for engineers. Finite element analysis revealed significant stress at the nozzle root, and subsequent ratcheting assessments indicated that the ASME standard yields more conservative results compared to RCC-MRx. These findings contribute to safer design practices and facilitate code-compliant evaluations in high-stakes industries.

References

[1]  康国政, 高庆, 杨显杰. 棘轮效应研究的若干进展[J]. 力学进展, 2005, 35(4): 526-532.
[2]  ASME Boiler and Pressure Vessel Committee (2021) ASME Boiler and Pressure Vessel Code, Section III Division 5: High Temperature Reactors.
[3]  AFCEN (2015) Design and Construction Rules for Mechanical Components of Nuclear Installations: High Temperature, Research and Fusion Reactors RCC-MRx, Section III, Tome 1. Subsection B.
[4]  牛清勇. 反应堆材料的棘轮与疲劳行为研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2003.
[5]  王云, 黄志影. 2.25Cr-1Mo-V钢制反应器的近似棘轮分析[J]. 一重技术, 2017(5): 1-7.
[6]  周杨. 核用不锈钢棘轮本构模型描述及压力管道棘轮效应研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2021.
[7]  彭常飞. 压力管道对焊焊接接头安定性分析[D]: [硕士学位论文]. 武汉: 武汉工程大学, 2013.
[8]  刘彩明. 核电管道棘轮效应及疲劳失效行为研究[D]: [博士学位论文]. 天津: 天津大学, 2022.
[9]  Sarkar, R., Sati, B.C. and Kumar, R.S. (2024) Assessment of Ratcheting in SGDHR Pipe Bend Based on Linear and Bi-Linear Analysis. Procedia Structural Integrity, 60, 75-92.
https://doi.org/10.1016/j.prostr.2024.05.032
[10]  Lee, H., Eoh, J. and Jeong, J. (2019) Elevated Temperature Design and Integrity Evaluation of a Large-Scale Sodium Test Facility, Stella-2. Nuclear Engineering and Design, 346, 54-66.
https://doi.org/10.1016/j.nucengdes.2019.02.024
[11]  徐志锋. 弯管结构的塑性极限与安定分析[D]: [博士学位论文]. 北京: 清华大学, 2000.
[12]  刘亚楠, 莫亚飞, 高付海, 等. 基于非线性方法的核级双层容器及支承结构热棘轮效应研究[J]. 原子能科学技术, 2024, 58(2): 431-440.
[13]  曲伟强. 复杂载荷下核电管道棘轮变形分析[D]: [硕士学位论文]. 天津: 天津大学, 2017.
[14]  公琦. 动力作用下工业管道安定与棘轮性能研究[D]: [硕士学位论文]. 北京: 北方工业大学, 2023.
[15]  玄洪伟, 阮大为. 埋地管道安定性能分析[J]. 中国科技信息, 2022(7): 41-43.
[16]  杨立栋, 高炳军. 循环弯矩作用下内压斜接管结构棘轮效应的数值分析[J]. 河北工业大学学报, 2011, 40(4): 32-36.
[17]  杨立栋, 董俊华, 高炳军. 内压圆筒斜接管结构的棘轮效应分析[J]. 力学学报, 2011, 43(3): 523-532.
[18]  苏红军. 换热器管板孔口不连续处棘轮现象模拟试验与分析[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2017.
[19]  赵延义. 热冲击下直接安注接管力学行为及棘轮效应研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133