|
基于CvT模型的高原环境下燃气燃烧火焰图像识别方法研究
|
Abstract:
针对高原低压环境下燃气锅炉燃烧状态监测难题,本文提出基于CvT模型的火焰图像智能识别方法。在青海西宁的一个1.4 MW燃气锅炉试验台上进行实验,采集典型工况燃气火焰图像,提取、分析其火焰图像特征,在此基础上,提出CvT-13混合模型,融合CNN局部特征提取与Transformer全局时序建模优势对火焰状态进行识别,实现模型特征与图像特征参数的协同分析。结果表明,CvT-13模型可实现高原低压环境下火焰状态的多维度表征,在背景、稳定及不稳定燃烧状态的分类测试中达到99.51%平均准确率,其中熄火不稳定状态召回率达99.67%,背景识别精确度100%。本文为高原低氧环境下的燃烧稳定性实时诊断提供了高精度、强鲁棒性的解决方案。
To address the challenges of combustion state monitoring in gas-fired boilers under plateau low-pressure environments, this study proposes an intelligent flame image recognition method based on a Convolutional vision Transformer (CvT) model. Experimental investigations were conducted on a 1.4 MW gas-fired boiler testbed in Xining, Qinghai Province, where characteristic flame images under typical operating conditions were collected and analyzed. Building upon extracted flame image features, we developed a CvT-13 hybrid model that integrates the advantages of CNN-based local feature extraction and Transformer-based global temporal modeling for flame state identification, enabling synergistic analysis between model characteristics and image feature parameters. Experimental results demonstrate that the CvT-13 model achieves multi-dimensional characterization of flame states in low-pressure plateau environments, attaining 99.51% average accuracy in classifying background, stable combustion, and unstable combustion states. Particularly notable performance includes 99.67% recall rate for flameout-unstable states and 100% precision in background recognition. This research provides a high-precision and robust solution for real-time diagnosis of combustion stability in hypoxic plateau environments.
[1] | 杜勇博, 张井坤, 笪耀东, 等. 高原锅炉燃料燃烧和烟气特性的研究与进展[J]. 工业锅炉, 2020(5): 1-6. |
[2] | Sai, Q., Zhao, J., Bi, D., Qin, B. and Meng, L. (2024) Improved Yolov8 for Gas-Flame State Recognition under Low-Pressure Conditions. Sensors, 24, Article 6383. https://doi.org/10.3390/s24196383 |
[3] | 李晓红, 李通征, 陶瑞鑫. 基于Fluent的青海高原燃气锅炉燃烧特性数值研究[J]. 节能, 2019, 38(10): 65-69. |
[4] | 于吉明, 笪耀东, 张井坤, 等. 高原WNS型燃气热水锅炉能效测试与数据分析[J]. 中国特种设备安全, 2022, 38(12): 48-51+62. |
[5] | Zhang, J., Ji, W., Yuan, Y., Sun, Q. and Tang, F. (2025) Effect of Low Atmospheric Pressure on Combustion Characteristics of Polypropylene: An Experimental Investigation. Applied Thermal Engineering, 265, Article 125545. https://doi.org/10.1016/j.applthermaleng.2025.125545 |
[6] | 舒文. 基于颜色厚度的预混碳氢火焰当量比软测量模型的研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2023. |
[7] | 蔡李靖, 蔡伟伟, 施展, 等. 燃烧诊断中的光学信号采集方法[J]. 信号处理, 2023, 39(12): 2091-2114. |
[8] | 刘鸿达, 孙旭辉, 李沂滨, 等. 基于卷积神经网络的图像分类深度学习模型综述[J]. 计算机工程与应用, 2025(3): 1-29. |
[9] | 杜丽霞, 梁晓萍. 基于Swin Transformer和PJF颜色空间的火灾检测算法[J]. 现代电子技术, 2025, 48(5): 147-152. |
[10] | 梁秀满, 安金铭, 曹晓华, 等. 基于CNN-Transformer双流网络的烧结火焰燃烧状态分类[J]. 应用光学, 2023, 44(5): 1030-1036. |
[11] | 陈浩霖, 高尚兵, 相林, 等. FIRE-DET: 一种高效的火焰检测模型[J]. 南京信息工程大学学报, 2023, 15(1): 76-84. |
[12] | 胡瀚淳. 融合卷积神经网络和Transformer架构的遥感影像自监督学习方法[D]: [硕士学位论文]. 武汉: 华中师范大学, 2024. |
[13] | 刘光宇, 曹禹, 王帅, 等. 基于自适应中值滤波的图像去噪技术研究[J]. 安徽电子信息职业技术学院学报, 2022, 21(5): 1-6. |
[14] | 吴一全, 宋昱, 周怀春. 基于灰度熵多阈值分割和SVM的火焰图像状态识别[J]. 中国电机工程学报, 2013, 33(20): 66-73+13. |
[15] | Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., et al. (2021) CvT: Introducing Convolutions to Vision Transformers. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 22-31. https://doi.org/10.1109/iccv48922.2021.00009 |