全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ASME规范案例N-898的617合金棘轮评价方法对比研究
A Comparative Study on the Ratchet Evaluation Methods of Alloy 617 Based on ASME Case N-898

DOI: 10.12677/mos.2025.144312, PP. 593-606

Keywords: 617合金,Abaqus子程序,弹性–理想塑性分析方法,棘轮
Alloy 617
, Abaqus Subroutine, Elastic-Perfectly Plastic Analysis Method, Ratcheting

Full-Text   Cite this paper   Add to My Lib

Abstract:

617合金是一种高温镍基材料,具有耐高温、耐腐蚀等优异特性,是第四代核反应堆系统中高温部件的主要候选材料。ASME规范第III卷第5册(简称ASME III-5)只提供了304不锈钢、316不锈钢、800H合金、2.25Cr-1Mo以及9Cr-1Mo-V五种材料在评价过程中所需要的数据,而ASME规范案例N-898 (简称N-898)补充给出了617合金的材料数据,并有望在后续会纳入到ASME规范中。N-898中还给出了一种弹性–理想塑性分析方法可以用于617合金的棘轮评价,该方法可以替代弹性分析方法和简化非弹性分析方法。本文依据N-898中提供的617合金蠕变本构模型,利用Fortran语言编写了Abaqus子程序,实现了基于非弹性分析方法的棘轮评价。通过算例,对弹性分析方法、简化非弹性分析方法、非弹性分析方法以及弹性–理想塑性分析方法进行了对比,讨论了不同评价方法之间的优缺点。
Alloy 617 is a high-temperature nickel-based material with excellent characteristics such as high temperature resistance and corrosion resistance. It is a primary candidate material for high-temperature components in the fourth-generation nuclear reactor systems. ASME III-5 only provides data for five materials—304 stainless steel, 316 stainless steel, alloy 800H, 2.25Cr-1Mo, and 9Cr-1Mo-V, required for evaluation processes. However, ASME Code Case N-898 supplements data for alloy 617 and is expected to be incorporated into ASME codes in subsequent revisions. N-898 also introduces an elastic-perfectly plastic analysis method for ratcheting evaluation of alloy 617, which can replace elastic analysis methods and simplify inelastic analysis methods. This paper, based on the creep constitutive model of alloy 617 provided in N-898, developed an Abaqus subroutine using Fortran language to implement ratcheting evaluation based on the inelastic analysis method. Through numerical examples, a comparison among elastic analysis method, simplified inelastic analysis method, inelastic analysis method and elastic-perfectly plastic analysis method was conducted, highlighting the advantages and disadvantages of different evaluation methods.

References

[1]  Benz, J.K., Carroll, L.J., Wright, J.K., Wright, R.N. and Lillo, T.M. (2014) Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures. Metallurgical and Materials Transactions A, 45, 3010-3022.
https://doi.org/10.1007/s11661-014-2244-y
[2]  Wright, J.K. (2015) Draft ASME Boiler and Pressure Vessel Code Section III, Division 5, Section HB, Subsection b, Code Case for Alloy 617 and Background Documentation. Idaho National Lab.
[3]  American Society of Mechanical Engineers (ASME) (2021) ASME Section III Code Case N-898-2019, Use of Alloy 617 for Class an Elevated Temperature Service Construction. ASME.
[4]  American Society of Mechanical Engineers (ASME) (2021) ASME Boiler and Pressure Vessel Code, Section Ⅲ, 2023 Edition, Division 5, High Temperature Reactors. ASME.
[5]  刘正奇, 高付海. ASME-Ⅲ-5高温1级部件分析设计方法的改进方向探讨[J]. 原子能科学技术, 2024, 58(4): 848-855.
[6]  高付海, 宫建国, 轩福贞. 基于非弹性分析方法的核电高温结构完整性评价框架及应用[J]. 压力容器, 2022, 39(4): 33-41.
[7]  何思翾, 彭恒, 史力, 等. 基于ASME Ⅲ-5中800H合金材料数据的高温部件非弹性分析评价方法[J]. 压力容器, 2023, 40(10): 28-37.
[8]  Wright, R.N. (2021) Draft ASME Boiler and Pressure Vessel Code Cases and Technical Bases for Use of Alloy 617 for Constructions of Nuclear Component Under Section III, Division 5.
https://doi.org/10.2172/1836553
[9]  Wang, Y., Jetter, R.I., Baird, S.T., et al. (2015) Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results. Oak Ridge National Lab.
[10]  Wang, Y., Jetter, R.I., Baird, S.T., et al. (2015) Report on FY15 Two-Bar Thermal Ratcheting Test Results. Oak Ridge National Lab.
[11]  傅孝龙, 王东辉, 杜娟, 等. 核级设备简化弹塑性疲劳分析中的塑性修正[J]. 机械工程师, 2017(1): 67-70.
[12]  Bree, J. (1967) Elastic-plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High-Heat Fluxes with Application to Fast-Nuclear-Reactor Fuel Elements. Journal of Strain Analysis, 2, 226-238.
https://doi.org/10.1243/03093247v023226
[13]  Messner, M.C. and Sham, T. (2019) Isochronous Stress-Strain Curves for Alloy 617. ASME 2019 Pressure Vessels & Piping Conference, San Antonio, 14-19 July 2019, 1-10.
https://doi.org/10.1115/pvp2019-93642
[14]  沈鋆, 刘应华, 陈志伟. 压力容器分析设计标准中高温分析方案的修订和讨论[J]. 压力容器, 2018, 35(5): 52-59.
[15]  Xia, Q., Gong, J. and Xuan, F. (2018) Creep Analysis for Pressurized Components under Creep Conditions Based on Isochronous Stress-Strain Curve and Elastic-Perfectly Plastic Material Model. ASME 2018 Pressure Vessels and Piping Conference, Prague, 15-20 July 2018, 1-6.
https://doi.org/10.1115/pvp2018-84265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133