全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

缝洞型地层漏失机理及井漏数值模拟研究进展
Research Advances in Lost Circulation Mechanisms and Numerical Simulation of Fracture-Vuggy Formations

DOI: 10.12677/se.2025.152004, PP. 23-31

Keywords: 缝洞型地层,井漏,漏失机理,数值模拟
Fracture-Vuggy Formations
, Lost Circulation, Lost Circulation Mechanisms, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

钻井液漏失仍是危及复杂油气藏安全钻井作业的关键性挑战。该问题在钻遇天然裂缝性储层、压力衰竭地层、弱胶结/破碎性储集层以及多压力体系时尤为显著。为了有效预防和控制缝洞型地层可能要发生的井漏,需要明确钻井液漏失理论和漏失特征。本文通过系统论述井漏数值模拟方法的演进历程,从早期连续介质理论、离散裂缝网络建模,到多场耦合与智能化技术,综述了目前国内外“地质认知深化–计算技术迭代–工程需求牵引”的协同创新机制。通过对比主流方法的适用性与局限性,提出未来需突破地质–工程数据融合、实时动态耦合算法与跨尺度统一理论框架等瓶颈。
Lost circulation remains a critical challenge jeopardizing safe drilling operations in complex hydrocarbon reservoirs. This issue becomes particularly pronounced when penetrating naturally fractured formations, pressure-depleted zones, weakly consolidated/fragmented reservoirs, and multiple pressure regimes. To effectively prevent and control potential lost circulation in fracture-vuggy formations, it is imperative to establish comprehensive theories governing drilling fluid loss mechanisms and characterize leakage behavioral patterns. This paper systematically reviews the evolutionary trajectory of numerical simulation methodologies for lost circulation analysis—progressing from early continuum mechanics frameworks and discrete fracture network (DFN) modeling to contemporary multi-physics coupling systems and intelligent simulation technologies. It synthesizes the current synergistic innovation mechanism driven by “geological cognition advancement, computational technology iteration, and engineering demand traction” within domestic and international research communities. Through comparative analysis of mainstream methodologies’ applicability and limitations, we propose future research priorities focusing on breakthroughs in geological-engineering data fusion, real-time dynamic coupling algorithms, and cross-scale unified theoretical frameworks.

References

[1]  邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
[2]  Kang, Y., You, L., Xu, X. and Liao, Z. (2012) Prevention of Formation Damage Induced by Mud Lost in Deep Fractured Tight Gas Reservoir in Western Sichuan Basin. Journal of Canadian Petroleum Technology, 51, 46-51.
https://doi.org/10.2118/131323-pa
[3]  孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3): 630-638.
[4]  王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源, 2014(1): 39.
[5]  张希文, 李爽, 张洁, 等. 钻井液堵漏材料及防漏堵漏技术研究进展[J]. 钻井液与完井液, 2009, 26(6): 74-76+79+97.
[6]  彭浩. 裂缝性地层井漏分析与堵漏决策优化研究[D]: [硕士学位论文]. 成都: 西南石油大学, 2016.
[7]  吕开河. 钻井工程中井漏预防与堵漏技术研究与应用[D]: [博士学位论文]. 大庆: 东北石油大学, 2007.
[8]  李大奇, 康毅力, 刘修善, 等. 基于漏失机理的碳酸盐岩地层漏失压力模型[J]. 石油学报, 2011, 32(5): 900-904.
[9]  曾义金, 李大奇, 杨春和. 裂缝性地层防漏堵漏力学机制研究[J]. 岩石力学与工程学报, 2016, 35(10): 2054-2061.
[10]  刘加杰, 康毅力, 王业众. 扩展钻井液安全密度窗口理论与技术进展[J]. 钻井液与完井液, 2007(4): 69-73+98-99.
[11]  皇凡生. 天然裂缝网络系统钻井完井液漏失数值模拟[D]: [硕士学位论文]. 成都: 西南石油大学, 2014.
[12]  李松. 海相碳酸盐岩层系钻井液漏失诊断基础研究[D]: [博士学位论文]. 成都: 西南石油大学, 2014.
[13]  王斌. 裂缝性漏层钻井液漏失与堵漏计算机模拟研究[D]: [硕士学位论文]. 成都: 西南石油大学, 2019.
[14]  Majidi, R., Miska, S.Z., Yu, M. and Thompson, L.G. (2008) Fracture Ballooning in Naturally Fractured Formations: Mechanism and Controlling Factors. SPE Annual Technical Conference and Exhibition, Denver, September 2008, SPE-115526-MS.
https://doi.org/10.2118/115526-ms
[15]  Wang, H., Towler, B. and Soliman, M. (2007) Fractured Wellbore Stress Analysis: Sealing Cracks to Strengthen a Wellbore. Proceedings of SPE/IADC Drilling Conference, Amsterdam, February 2007, SPE-104947-MS.
https://doi.org/10.2523/104947-ms
[16]  Warren, J.E. and Root, P.J. (1963) The Behavior of Naturally Fractured Reservoirs. Society of Petroleum Engineers Journal, 3, 245-255.
https://doi.org/10.2118/426-pa
[17]  Barenblatt, G.I., Zheltov, I.P. and Kochina, I.N. (1960) Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]. Journal of Applied Mathematics and Mechanics, 24, 1286-1303.
https://doi.org/10.1016/0021-8928(60)90107-6
[18]  Sanfillippo, F., Brignoli, M., Santarelli, F.J. and Bezzola, C. (1997) Characterization of Conductive Fractures While Drilling. SPE European Formation Damage Conference, The Hague, June 1997, SPE-38177-MS.
https://doi.org/10.2118/38177-ms
[19]  Dershowitz, W.S. and Einstein, H.H. (1988) Characterizing Rock Joint Geometry with Joint System Models. Rock Mechanics and Rock Engineering, 21, 21-51.
https://doi.org/10.1007/bf01019674
[20]  Tempone, P. and Lavrov, A. (2008) DEM Modeling of Mud Losses into Single Fractures and Fracture Network. 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, 1-6 October 2008, 10-13.
[21]  Karimi-Fard, M., Durlofsky, L.J. and Aziz, K. (2004) An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE Journal, 9, 227-236.
https://doi.org/10.2118/88812-pa
[22]  Lavrov, A. and Tronvoll, J. (2004) Modeling Mud Loss in Fractured Formations. Abu Dhabi International Conference and Exhibition, Abu Dhabi, October 2004, SPE-88700-MS.
https://doi.org/10.2118/88700-ms
[23]  Fang, J., Zhou, F. and Tang, Z. (2017) Discrete Fracture Network Modelling in a Naturally Fractured Carbonate Reservoir in the Jingbei Oilfield, China. Energies, 10, Article No. 183.
https://doi.org/10.3390/en10020183
[24]  Feng, Y. and Gray, K.E. (2017) Modeling Lost Circulation through Drilling-Induced Fractures. SPE Journal, 23, 205-223.
https://doi.org/10.2118/187945-pa
[25]  Kim, Y.D. and Durlofsky, L.J. (2023) Convolutional-Recurrent Neural Network Proxy for Robust Optimization and Closed-Loop Reservoir Management. Computational Geosciences, 27, 179-202.
https://doi.org/10.1007/s10596-022-10189-9
[26]  Guo, Y. (2024) Multi-Scale Chemo-Mechanical Coupling Effects for Fluid-Infiltrating Porous Media: Theory, Implementation, and Validation.
[27]  Yaghoubi, A. (2019) Hydraulic Fracturing Modeling Using a Discrete Fracture Network in the Barnett Shale. International Journal of Rock Mechanics and Mining Sciences, 119, 98-108.
https://doi.org/10.1016/j.ijrmms.2019.01.015
[28]  Sahimi, M. and Tahmasebi, P. (2022) The Potential of Quantum Computing for Geoscience. Transport in Porous Media, 145, 367-387.
https://doi.org/10.1007/s11242-022-01855-8
[29]  Zhang, T., Zhu, P. and Lu, F. (2023) Stochastic Reconstruction of Porous Media Based on Attention Mechanisms and Multi-Stage Generative Adversarial Network. Computational Geosciences, 27, 515-536.
https://doi.org/10.1007/s10596-023-10208-3
[30]  Lee, J. and Chang, J.S. (2024) Physics-Informed Neural Network Model for Predictive Risk Assessment and Safety Analysis. Transportation Research Record: Journal of the Transportation Research Board.
https://doi.org/10.1177/03611981241297662

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133