|
Applied Physics 2025
基于人工神经网络的单核子分离能研究
|
Abstract:
本研究基于三个具有代表性的理论模型:相对论连续谱Hartree-Bogoliubov (RCHB)理论,相对论平均场(RMF)理论,Skyrme-Hartree-Fock-Bogoliubov (SHFB)模型,首先介绍了人工神经网络(ANN)方法,计算出了三个模型的单核子分离能的理论预测值。随后利用神经网络对单核子分离能的理论值进行了优化训练,降低了单核子分离能的理论预测值与实验值之间的均方根偏差(RMSD),并在此基础上进行了两种分区优化,分别为质子和中子的幻数分区,分区优化训练后进一步降低了RMSD。单核子分离能分区训练后的RMSD比整体直接训练的效果更好,特别能显著降低轻核区的RMSD,单中子分离能进行中子幻数分区训练的效果更好,单质子分离能进行质子幻数分区训练的效果更好。
This research is based on three representative theoretical models: the Relativistic Continuum Hartree-Bogoliubov (RCHB) theory, Relativistic Mean Field (RMF) theory, and Skyrme-Hartree-Fock-Bogoliubov (SHFB) model. First, the Artificial Neural Network (ANN) method was introduced to calculate theoretical predictions of single-nucleon separation energies for these three models. Subsequently, the neural network was employed to optimize and train the theoretical values of single-nucleon separation energies, reducing the root mean square deviation (RMSD) between theoretical predictions and experimental values. Two partitioning optimization schemes were then implemented: proton magic number partitioning and neutron magic number partitioning. The partitioned optimization training further reduced RMSD values. The partitioned training of single-nucleon separation energies demonstrated better performance than direct global training, particularly in significantly reducing RMSD in the light nuclei region. Specifically, neutron magic number partitioning showed superior effectiveness for optimizing single-neutron separation energies, while proton magic number partitioning yielded better results for single-proton separation energies.
[1] | Goriely, S., Chamel, N. and Pearson, J.M. (2016) Further Explorations of Skyrme-Hartree-Fock-Bogoliubov Mass Formulas. XVI. Inclusion of Self-Energy Effects in Pairing. Physical Review C, 93, Article 034337. https://doi.org/10.1103/physrevc.93.034337 |
[2] | Hofmann, S. and Münzenberg, G. (2000) The Discovery of the Heaviest Elements. Reviews of Modern Physics, 72, 733-767. https://doi.org/10.1103/revmodphys.72.733 |
[3] | Lunney, D., Pearson, J.M. and Thibault, C. (2003) Recent Trends in the Determination of Nuclear Masses. Reviews of Modern Physics, 75, 1021-1082. https://doi.org/10.1103/revmodphys.75.1021 |
[4] | Arnould, M. and Takahashi, K. (1999) Nuclear Astrophysics. Reports on Progress in Physics, 62, 395-462. https://doi.org/10.1088/0034-4885/62/3/003 |
[5] | Kirson, M.W. (2008) Mutual Influence of Terms in a Semi-Empirical Mass Formula. Nuclear Physics A, 798, 29-60. https://doi.org/10.1016/j.nuclphysa.2007.10.011 |
[6] | Wang, N., Liu, M., Wu, X. and Meng, J. (2014) Surface Diffuseness Correction in Global Mass Formula. Physics Letters B, 734, 215-219. https://doi.org/10.1016/j.physletb.2014.05.049 |
[7] | 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究[J]. 物理学报, 2022, 71(10): 163-172. |
[8] | 李伟峰, 张晓燕, 牛中明. 贝叶斯神经网络方法对原子核β衰变寿命的研究[J]. 核技术, 2023, 46(8): 126-133. |
[9] | 董潇旭, 耿立升. 机器学习方法研究原子核的电荷半径[J]. 原子能科学技术, 2023, 57(4): 679-695. |
[10] | 王逸夫, 牛中明. 多任务神经网络对原子核低激发谱的研究[J]. 原子核物理评论, 2022, 39(3): 273-280. |
[11] | 卜炫德, 吴迪, 白春林. 基于神经网络预测重核α衰变半衰期[J]. 中国科学: 物理学, 力学, 天文学, 2022, 52(5): 51-56. |
[12] | 李佳星, 赵天亮, 马娜娜, 等. 神经网络方法在核质量中的应用[J]. 原子能科学技术, 2023, 57(4): 696-703. |
[13] | Xia, X.W., Lim, Y., Zhao, P.W., Liang, H.Z., Qu, X.Y., Chen, Y., et al. (2018) The Limits of the Nuclear Landscape Explored by the Relativistic Continuum Hartree-Bogoliubov Theory. Atomic Data and Nuclear Data Tables, 121, 1-215. https://doi.org/10.1016/j.adt.2017.09.001 |
[14] | Meng, J. (1998) Relativistic Continuum Hartree-Bogoliubov Theory with Both Zero Range and Finite Range Gogny Force and Their Application. Nuclear Physics A, 635, 3-42. https://doi.org/10.1016/s0375-9474(98)00178-x |
[15] | Peña-Arteaga, D., Goriely, S. and Chamel, N. (2016) Relativistic Mean-Field Mass Models. The European Physical Journal A, 52, Article No. 320. https://doi.org/10.1140/epja/i2016-16320-x |
[16] | Geng, L., Toki, H., Sugimoto, S. and Meng, J. (2003) Relativistic Mean Field Theory for Deformed Nuclei with Pairing Correlations. Progress of Theoretical Physics, 110, 921-936. https://doi.org/10.1143/ptp.110.921 |
[17] | 董军, 胡上序. 混沌神经网络研究进展与展望[J]. 信息与控制, 1997, 26(5): 360-368. |
[18] | Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., et al. (2015) Human-Level Control through Deep Reinforcement Learning. Nature, 518, 529-533. https://doi.org/10.1038/nature14236 |
[19] | Wang, M., Huang, W.J., Kondev, F.G., Audi, G. and Naimi, S. (2021) The AME 2020 Atomic Mass Evaluation (II). Tables, Graphs and References. Chinese Physics C, 45, Article 030003. https://doi.org/10.1088/1674-1137/abddaf |