|
基于深度学习的脑肿瘤图像分割方法研究
|
Abstract:
脑肿瘤是严重威胁人类健康的疾病之一,因此脑肿瘤精确分割在临床诊疗中非常重要。然而在实际医疗诊断中要面临瘤体体积、位置难以确定,形状各异的问题,致使脑肿瘤分割任务面临着分割结果精确度不够高、训练计算量较大以及分割时间久的问题。近年来,U-Net凭借其简洁的架构和优秀的性能成为解决医学图像分割任务的主流模型,但其也存在特征提取能力有限、局部感受野有限、对复杂目标的适应性不够和上下文信息利用不足等问题。本文针对以上问题,提出一种U-Net网络改进方案。通过将ResNet50替换U-Net网络的主干特征提取网络,并在跳跃连接和解码器上采样中引入SE-Net模块,提升网络的表现力和鲁棒性,选用Dice Loss与Binary Cross Entropy (BCE) Loss结合的损失函数,主要作用是优化深度学习模型在脑肿瘤分割任务中的性能。在公开的BraTS2021数据集上进行了大量实验,结果显示本文模型的Dice评价指标达到0.856,相较于U-Net指标改善了4.3%。同时与其他代表性方法对比也表现出了良好的脑肿瘤分割性能。
Brain tumors are one of the diseases that pose a serious threat to human health, making precise brain tumor segmentation critically important in clinical diagnosis and treatment. However, in practical medical diagnostics, challenges such as difficulties in determining tumor volume, location, and the variability in tumor shapes lead to issues in brain tumor segmentation, including insufficient accuracy, high computational costs, and prolonged segmentation times. In recent years, U-Net has become a mainstream model for medical image segmentation due to its simple architecture and excellent performance. However, it also suffers from limitations such as limited feature extraction capabilities, restricted local receptive fields, inadequate adaptability to complex targets, and insufficient utilization of contextual information. To address these issues, this paper proposes an improved U-Net network. By replacing the backbone feature extraction network of U-Net with ResNet50 and introducing the SE-Net module in skip connections and decoder upsampling, the network’s expressiveness and robustness are enhanced. Additionally, a combined loss function of Dice Loss and Binary Cross Entropy (BCE) Loss is employed to optimize the performance of the deep learning model in brain tumor segmentation tasks. Extensive experiments conducted on the publicly available BraTS2021 dataset show that the proposed model achieves a Dice evaluation metric of 0.856, representing a 4.3% improvement over the original U-Net. Furthermore, the model demonstrates superior brain tumor segmentation performance compared to other representative methods.
[1] | 梁志远, 黄芝瑛, 耿兴超, 等. 原发性脑肿瘤的临床前疾病模型研究进展[J]. 中国新药杂志, 2023, 32(8): 787-792. |
[2] | Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820. https://doi.org/10.1007/s00401-016-1545-1 |
[3] | 江宗康, 吕晓钢, 张建新, 等. MRI脑肿瘤图像分割的深度学习方法综述[J]. 中国图象图形学报, 2020, 25(2): 215-228. |
[4] | 周煜松, 陈罗林, 王统, 等. 基于双重注意力机制和迭代聚合U-Net的脑肿瘤MR图像分割方法[J]. 中南民族大学学报(自然科学版), 2023, 42(3): 373-381. |
[5] | 方玲玲, 王欣. MRI脑肿瘤图像的超像素/体素分割及发展现状[J]. 中国图象图形学报, 2022, 27(10): 2897-2915. |
[6] | Ilhan, U. and Ilhan, A. (2017) Brain Tumor Segmentation Based on a New Threshold Approach. Procedia Computer Science, 120, 580-587. https://doi.org/10.1016/j.procs.2017.11.282 |
[7] | Wan, S.-Y. and Higgins, W.E. (2003) Symmetric Region Growing. IEEE Transactions on Image Processing, 12, 1007-1015. https://doi.org/10.1109/tip.2003.815258 |
[8] | Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R. and Warfield, S.K. (2004) Improved Watershed Transform for Medical Image Segmentation Using Prior Information. IEEE Transactions on Medical Imaging, 23, 447-458. https://doi.org/10.1109/tmi.2004.824224 |
[9] | Sekhar, A., Biswas, S., Hazra, R., Sunaniya, A.K., Mukherjee, A. and Yang, L. (2022) Brain Tumor Classification Using Fine-Tuned GoogLeNet Features and Machine Learning Algorithms: IoMT Enabled CAD System. IEEE Journal of Biomedical and Health Informatics, 26, 983-991. https://doi.org/10.1109/jbhi.2021.3100758 |
[10] | Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science, Springer, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28 |
[11] | Shelhamer, E., Long, J. and Darrell, T. (2017) Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651. https://doi.org/10.1109/tpami.2016.2572683 |
[12] | McHugh, H., Talou, G.M. and Wang, A. (2021) 2D Dense-UNet: A Clinically Valid Approach to Automated Glioma Segmentation. In: Lecture Notes in Computer Science, Springer, 69-80. https://doi.org/10.1007/978-3-030-72087-2_7 |
[13] | Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J. and Maier-Hein, K.H. (2020) nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nature Methods, 18, 203-211. https://doi.org/10.1038/s41592-020-01008-z |
[14] | Liu, H., Huo, G., Li, Q., Guan, X. and Tseng, M. (2023) Multiscale Lightweight 3D Segmentation Algorithm with Attention Mechanism: Brain Tumor Image Segmentation. Expert Systems with Applications, 214, Article 119166. https://doi.org/10.1016/j.eswa.2022.119166 |
[15] | Zhang, J., Xie, Y., Wang, Y. and Xia, Y. (2021) Inter-Slice Context Residual Learning for 3D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 40, 661-672. https://doi.org/10.1109/tmi.2020.3034995 |
[16] | Kaku, A., Hegde, C.V., Huang, J., et al. (2019) DARTS: Dense UNet-Based Automatic Rapid Tool for Brain Segmentation. |
[17] | Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N. and Liang, J. (2018) UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In: Lecture Notes in Computer Science, Springer I, 3-11. https://doi.org/10.1007/978-3-030-00889-5_1 |
[18] | Kermi, A., Mahmoudi, I. and Khadir, M.T. (2019) Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes. In: Lecture Notes in Computer Science, Springer, 37-48. https://doi.org/10.1007/978-3-030-11726-9_4 |
[19] | He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. https://doi.org/10.1109/cvpr.2016.90 |
[20] | Montminy, D.P., Baldwin, R.O., Temple, M.A. and Laspe, E.D. (2012) Improving Cross-Device Attacks Using Zero-Mean Unit-Variance Normalization. Journal of Cryptographic Engineering, 3, 99-110. https://doi.org/10.1007/s13389-012-0038-y |
[21] | 陈圆. 高效自注意力和上下文信息增强的目标检测算法研究[D]: [硕士学位论文]. 赣州: 江西理工大学, 2023. |
[22] | 杨诒斌, 王俊强, 柴世豪. 基于CNN的智慧农场图像分类方法[J]. 电子技术应用, 2023, 49(4): 33-38. |
[23] | 韩腾昊. 基于特征与空间关系编码胶囊网络的研究与应用[D]: [硕士学位论文]. 青岛: 青岛大学, 2020. |
[24] | 王继虎. 基于知识图谱异质化信息协同的推荐方法研究[D]: [博士学位论文]. 济南: 山东大学, 2023. |
[25] | 张圣海. 基于医学影像-基因人工智能模型的生存分析[D]: [硕士学位论文]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2021. |