|
Applied Physics 2025
二维材料制备与MoS2/WS2异质结光电探测器研究进展
|
Abstract:
由于传统电子器件性能已经接近其物理极限,因此需要一种新的材料来突破这一现状。作为TMD材料的代表,近年来,MoS2、WS2由于其优异的光学、电学特性在光电探测器领域展现出了巨大的应用潜力。如何制备高质量的二维材料以及如何提升MoS2/WS2异质结光电探测器的性能具有重要研究意义。本文综述了二维材料的制备方法与MoS2/WS2异质结光电探测器的研究现状。讨论了二维材料的制备方法,介绍了光电探测器的基本器件参数,总结了MoS2/WS2异质结光电探测器的性能现状,并对MoS2/WS2异质结光电探测器面临的问题进行了简要的总结与展望。
As the performance of conventional electronic devices is approaching its physical limit, a new material is needed to break through the situation. As representatives of TMD materials, MoS2 and WS2 have shown great potential for application in the field of photodetectors in recent years due to their excellent optical and electrical properties. How to synthesise high-quality 2D materials and how to enhance the performance of MoS2/WS2 heterostructure photodetectors are of great research significance. This paper reviews the synthesis methods of 2D materials and the present research progress of MoS2/WS2 heterojunction photodetectors. It discusses the synthesis methods of 2D materials, introduces the basic mechanisms and device parameters of photodetectors, summarises the present progress of MoS2/WS2 heterostructure photodetectors, and provides a brief summary of the problems with MoS2/WS2 heterostructure photodetector and an outlook.
[1] | Moore, G.E. (1998) Cramming More Components onto Integrated Circuits. Proceedings of the IEEE, 86, 82-85. https://doi.org/10.1109/jproc.1998.658762 |
[2] | Keyes, R.W. (1975) Physical Limits in Digital Electronics. Proceedings of the IEEE, 63, 740-767. https://doi.org/10.1109/proc.1975.9825 |
[3] | McMahon, P.L. (2023) The Physics of Optical Computing. Nature Reviews Physics, 5, 717-734. https://doi.org/10.1038/s42254-023-00645-5 |
[4] | Ossiander, M., Golyari, K., Scharl, K., Lehnert, L., Siegrist, F., Bürger, J.P., et al. (2022) The Speed Limit of Optoelectronics. Nature Communications, 13, Article No. 1620. https://doi.org/10.1038/s41467-022-29252-1 |
[5] | Yao, J. and Yang, G. (2020) 2D Material Broadband Photodetectors. Nanoscale, 12, 454-476. https://doi.org/10.1039/c9nr09070c |
[6] | Kim, S., Lee, D., Moon, S., Choi, J., Kim, D., Kim, J., et al. (2023) Sulfurized Colloidal Quantum Dot/Tungsten Disulfide Multi-Dimensional Heterojunction for an Efficient Self-Powered Visible-to-SWIR Photodetector. Advanced Functional Materials, 33, Article 2303778. https://doi.org/10.1002/adfm.202303778 |
[7] | Jo, C., Kim, J., Kwak, J.Y., Kwon, S.M., Park, J.B., Kim, J., et al. (2022) Retina-Inspired Color-Cognitive Learning via Chromatically Controllable Mixed Quantum Dot Synaptic Transistor Arrays. Advanced Materials, 34, Article 2108979. https://doi.org/10.1002/adma.202108979 |
[8] | Kopytko, M., Wróbel, J., Jóźwikowski, K., Rogalski, A., Antoszewski, J., Akhavan, N.D., et al. (2015) Engineering the Bandgap of Unipolar HgCdTe-Based nBn Infrared Photodetectors. Journal of Electronic Materials, 44, 158-166. https://doi.org/10.1007/s11664-014-3511-9 |
[9] | Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896 |
[10] | Xia, F., Wang, H., Xiao, D., Dubey, M. and Ramasubramaniam, A. (2014) Two-Dimensional Material Nanophotonics. Nature Photonics, 8, 899-907. https://doi.org/10.1038/nphoton.2014.271 |
[11] | Cheng, J., Wang, C., Zou, X. and Liao, L. (2018) Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Advanced Optical Materials, 7, Article 1800441. https://doi.org/10.1002/adom.201800441 |
[12] | Huo, N. and Konstantatos, G. (2018) Recent Progress and Future Prospects of 2D-Based Photodetectors. Advanced Materials, 30, Article 1801164. https://doi.org/10.1002/adma.201801164 |
[13] | Lukman, S., Ding, L., Xu, L., Tao, Y., Riis-Jensen, A.C., Zhang, G., et al. (2020) High Oscillator Strength Interlayer Excitons in Two-Dimensional Heterostructures for Mid-Infrared Photodetection. Nature Nanotechnology, 15, 675-682. https://doi.org/10.1038/s41565-020-0717-2 |
[14] | Zha, J., Luo, M., Ye, M., Ahmed, T., Yu, X., Lien, D., et al. (2021) Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 32, Article 2111970. https://doi.org/10.1002/adfm.202111970 |
[15] | Tsai, D., Liu, K., Lien, D., Tsai, M., Kang, C., Lin, C., et al. (2013) Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 7, 3905-3911. https://doi.org/10.1021/nn305301b |
[16] | Li, P., Lu, J., Cui, H., Ruan, S. and Zeng, Y. (2021) The Development, Application, and Performance of Black Phosphorus in Energy Storage and Conversion. Materials Advances, 2, 2483-2509. https://doi.org/10.1039/d0ma01016b |
[17] | Malik, M., Iqbal, M.A., Choi, J.R. and Pham, P.V. (2022) 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Frontiers in Chemistry, 10, Article 905404. https://doi.org/10.3389/fchem.2022.905404 |
[18] | Long, M., Wang, P., Fang, H. and Hu, W. (2018) Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 29, Article 1803807. https://doi.org/10.1002/adfm.201803807 |
[19] | Island, J.O., Steele, G.A., van der Zant, H.S.J. and Castellanos-Gomez, A. (2015) Environmental Instability of Few-Layer Black Phosphorus. 2D Materials, 2, Article 011002. https://doi.org/10.1088/2053-1583/2/1/011002 |
[20] | Gupta, A., Sakthivel, T. and Seal, S. (2015) Recent Development in 2D Materials Beyond Graphene. Progress in Materials Science, 73, 44-126. https://doi.org/10.1016/j.pmatsci.2015.02.002 |
[21] | Femi-Oyetoro, J., Yao, K., Hathaway, E., Jiang, Y., Ojo, I., Squires, B., et al. (2021) Structural Stability of Bilayer MoS2 in Ambient Air. Advanced Materials Interfaces, 8, Article 2101188. https://doi.org/10.1002/admi.202101188 |
[22] | Huo, N., Kang, J., Wei, Z., Li, S., Li, J. and Wei, S. (2014) Novel and Enhanced Optoelectronic Performances of Multilayer MoS2-WS2 Heterostructure Transistors. Advanced Functional Materials, 24, 7025-7031. https://doi.org/10.1002/adfm.201401504 |
[23] | Chen, Y. and Sun, M. (2021) Two-Dimensional WS2/MoS2 Heterostructures: Properties and Applications. Nanoscale, 13, 5594-5619. https://doi.org/10.1039/d1nr00455g |
[24] | Che, M., Wang, B., Zhao, X., Li, Y., Chang, C., Liu, M., et al. (2024) PdSe2/2H-MoTe2 Heterojunction Self-Powered Photodetector: Broadband Photodetection and Linear/Circular Polarization Capability. ACS Nano, 18, 30884-30895. https://doi.org/10.1021/acsnano.4c12298 |
[25] | Tan, H., Xu, W., Sheng, Y., Lau, C.S., Fan, Y., Chen, Q., et al. (2017) Lateral Graphene-Contacted Vertically Stacked WS2/MoS2 Hybrid Photodetectors with Large Gain. Advanced Materials, 29, Article 1702917. https://doi.org/10.1002/adma.201702917 |
[26] | Yi, M. and Shen, Z. (2015) A Review on Mechanical Exfoliation for the Scalable Production of Graphene. Journal of Materials Chemistry A, 3, 11700-11715. https://doi.org/10.1039/c5ta00252d |
[27] | Li, Y., Kuang, G., Jiao, Z., Yao, L. and Duan, R. (2022) Recent Progress on the Mechanical Exfoliation of 2D Transition Metal Dichalcogenides. Materials Research Express, 9, Article 122001. https://doi.org/10.1088/2053-1591/aca6c6 |
[28] | Sultana, N., Degg, A., Upadhyaya, S., Nilges, T. and Sen Sarma, N. (2022) Synthesis, Modification, and Application of Black Phosphorus, Few-Layer Black Phosphorus (FLBP), and Phosphorene: A Detailed Review. Materials Advances, 3, 5557-5574. https://doi.org/10.1039/d1ma01101d |
[29] | Gautam, C. and Chelliah, S. (2021) Methods of Hexagonal Boron Nitride Exfoliation and Its Functionalization: Covalent and Non-Covalent Approaches. RSC Advances, 11, 31284-31327. https://doi.org/10.1039/d1ra05727h |
[30] | Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., et al. (2013) One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 342, 614-617. https://doi.org/10.1126/science.1244358 |
[31] | Hussain, M., Jaffery, S.H.A., Ali, A., Nguyen, C.D., Aftab, S., Riaz, M., et al. (2021) NIR Self-Powered Photodetection and Gate Tunable Rectification Behavior in 2D GeSe/MoSe2 Heterojunction Diode. Scientific Reports, 11, Article No. 3688. https://doi.org/10.1038/s41598-021-83187-z |
[32] | Novoselov, K.S. (2011) Nobel Lecture: Graphene: Materials in the Flatland. Reviews of Modern Physics, 83, 837-849. https://doi.org/10.1103/revmodphys.83.837 |
[33] | Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al. (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331, 568-571. https://doi.org/10.1126/science.1194975 |
[34] | Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., et al. (2010) Robust High-Κ Response in Molecularly Thin Perovskite Nanosheets. ACS Nano, 4, 5225-5232. https://doi.org/10.1021/nn101453v |
[35] | Fukuda, K., Nakai, I., Ebina, Y., Ma, R. and Sasaki, T. (2007) Colloidal Unilamellar Layers of Tantalum Oxide with Open Channels. Inorganic Chemistry, 46, 4787-4789. https://doi.org/10.1021/ic7004002 |
[36] | Huo, C., Yan, Z., Song, X. and Zeng, H. (2015) 2D Materials via Liquid Exfoliation: A Review on Fabrication and Applications. Science Bulletin, 60, 1994-2008. https://doi.org/10.1007/s11434-015-0936-3 |
[37] | Akeredolu, B.J., Ahemen, I., Amah, A.N., Onojah, A.D., Shakya, J., Gayathri, H.N., et al. (2024) Improved Liquid Phase Exfoliation Technique for the Fabrication of MoS2/graphene Heterostructure-Based Photodetector. Heliyon, 10, e24964. https://doi.org/10.1016/j.heliyon.2024.e24964 |
[38] | Wang, M., Osella, S., Brescia, R., Liu, Z., Gallego, J., Cattelan, M., et al. (2023) 2D MoS2/BioBr Van Der Waals Heterojunctions by Liquid-Phase Exfoliation as Photoelectrocatalysts for Hydrogen Evolution. Nanoscale, 15, 522-531. https://doi.org/10.1039/d2nr04970h |
[39] | Chen, J., Zhao, X., Tan, S.J.R., Xu, H., Wu, B., Liu, B., et al. (2017) Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. Journal of the American Chemical Society, 139, 1073-1076. https://doi.org/10.1021/jacs.6b12156 |
[40] | Lee, J., Pak, S., Giraud, P., Lee, Y., Cho, Y., Hong, J., et al. (2017) Monolayers: Thermodynamically Stable Synthesis of Large‐scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and Their Unipolar N-N Heterojunction Devices (adv. Mater. 33/2017). Advanced Materials, 29, Article 1702206. https://doi.org/10.1002/adma.201770236 |
[41] | Gao, Y., Hong, Y., Yin, L., Wu, Z., Yang, Z., Chen, M., et al. (2017) Ultrafast Growth of High-Quality Monolayer WSe2 on Au. Advanced Materials, 29, Article 1700990. https://doi.org/10.1002/adma.201700990 |
[42] | Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., et al. (2014) Vertical and In-Plane Heterostructures from WS2/MoS2 Monolayers. Nature Materials, 13, 1135-1142. https://doi.org/10.1038/nmat4091 |
[43] | Duan, X., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H., et al. (2014) Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions. Nature Nanotechnology, 9, 1024-1030. https://doi.org/10.1038/nnano.2014.222 |
[44] | Li, M., Shi, Y., Cheng, C., Lu, L., Lin, Y., Tang, H., et al. (2015) Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral P-N Junction with an Atomically Sharp Interface. Science, 349, 524-528. https://doi.org/10.1126/science.aab4097 |
[45] | Ye, K., Liu, L., Liu, Y., Nie, A., Zhai, K., Xiang, J., et al. (2019) Lateral Bilayer MoS2-WS2 Heterostructure Photodetectors with High Responsivity and Detectivity. Advanced Optical Materials, 7, Article 1900815. https://doi.org/10.1002/adom.201900815 |
[46] | Zhang, Y., Ugeda, M.M., Jin, C., Shi, S., Bradley, A.J., Martín-Recio, A., et al. (2016) Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. Nano Letters, 16, 2485-2491. https://doi.org/10.1021/acs.nanolett.6b00059 |
[47] | Wofford, J.M., Nakhaie, S., Krause, T., Liu, X., Ramsteiner, M., Hanke, M., et al. (2017) A Hybrid MBE-Based Growth Method for Large-Area Synthesis of Stacked Hexagonal Boron Nitride/Graphene Heterostructures. Scientific Reports, 7, Article No. 43644. https://doi.org/10.1038/srep43644 |
[48] | Mahjouri-Samani, M., Gresback, R., Tian, M., Wang, K., Puretzky, A.A., Rouleau, C.M., et al. (2014) Pulsed Laser Deposition of Photoresponsive Two-Dimensional Gase Nanosheet Networks. Advanced Functional Materials, 24, 6365-6371. https://doi.org/10.1002/adfm.201401440 |
[49] | Yao, J.D., Zheng, Z.Q., Shao, J.M. and Yang, G.W. (2015) Stable, Highly-Responsive and Broadband Photodetection Based on Large-Area Multilayered WS2 Films Grown by Pulsed-Laser Deposition. Nanoscale, 7, 14974-14981. https://doi.org/10.1039/c5nr03361f |
[50] | Wu, Z., Shi, P., Xing, R., Xing, Y., Ge, Y., Wei, L., et al. (2022) Quasi-Two-Dimensional α-Molybdenum Oxide Thin Film Prepared by Magnetron Sputtering for Neuromorphic Computing. RSC Advances, 12, 17706-17714. https://doi.org/10.1039/d2ra02652j |
[51] | Tao, J., Chai, J., Lu, X., Wong, L.M., Wong, T.I., Pan, J., et al. (2015) Growth of Wafer-Scale MoS2 Monolayer by Magnetron Sputtering. Nanoscale, 7, 2497-2503. https://doi.org/10.1039/c4nr06411a |
[52] | Sinha, S., Kumar, S., Arora, S.K., Sharma, A., Tomar, M., Wu, H., et al. (2021) Enhanced Interlayer Coupling and Efficient Photodetection Response of in-Situ Grown MoS2-WS2 Van Der Waals Heterostructures. Journal of Applied Physics, 129, Article 155304. https://doi.org/10.1063/5.0040922 |
[53] | Wang, Q., Wu, P., Cao, G. and Huang, M. (2013) First-Principles Study of the Structural and Electronic Properties of MoS2-WS2 and MoS2-MoTe2 Monolayer Heterostructures. Journal of Physics D: Applied Physics, 46, Article 505308. https://doi.org/10.1088/0022-3727/46/50/505308 |
[54] | Li, C., Zhu, J., Du, W., Huang, Y., Xu, H., Zhai, Z., et al. (2021) The Photodetectors Based on Lateral Monolayer MoS2/WS2 Heterojunctions. Nanoscale Research Letters, 16, Article No. 123. https://doi.org/10.1186/s11671-021-03581-4 |
[55] | Zhao, D., Jiao, H., Chen, C., Chen, Y., Wang, S., Cao, H., et al. (2023) Controllable Photocurrent Generation in Lateral Bilayer MoS2-WS2 Heterostructure. Advanced Optical Materials, 11, Article 2300709. https://doi.org/10.1002/adom.202300709 |
[56] | Vu, V.T., Phan, T.L., Vu, T.T.H., Park, M.H., Do, V.D., Bui, V.Q., et al. (2022) Synthesis of a Selectively Nb-Doped WS2-MoS2 Lateral Heterostructure for a High-Detectivity PN Photodiode. ACS Nano, 16, 12073-12082. https://doi.org/10.1021/acsnano.2c02242 |
[57] | Wang, G., Li, L., Fan, W., Wang, R., Zhou, S., Lü, J., et al. (2018) Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 28, Article 1800339. https://doi.org/10.1002/adfm.201800339 |
[58] | Yang, S., Wu, Z., Wang, S., Zheng, P. and Zhang, Y. (2024) Significantly Enhanced Photoresponse of Self-Powered 2D MoS2/WS2 Heterojunction Photodiode via F4-TCNQ Doping. ACS Applied Electronic Materials, 6, 3374-3384. https://doi.org/10.1021/acsaelm.4c00192 |
[59] | Bose, S., Mukherjee, S., Jana, S., Srivastava, S.K. and Ray, S.K. (2023) One-Pot Liquid-Phase Synthesis of MoS2-WS2 Van Der Waals Heterostructures for Broadband Photodetection. Nanotechnology, 34, Article 125704. https://doi.org/10.1088/1361-6528/acab6e |