|
Applied Physics 2025
基于OCTEM的导电材料电阻率测量计算方法
|
Abstract:
新开发的导电材料亟需掌握其电阻率特性,但是由于样品数量的稀缺以及拉丝工艺的困难,采用强迫电流法测量导电材料电阻率时极易造成电路短路。为此,本文提出了基于等值反磁通瞬变电磁法测量导电材料电阻率方法。首先,为了避免关断电磁振荡和环境噪声,提高信噪比,构建早期和晚期可信时刻线,采用二次场响应曲线和早晚最可信时刻线的扇形面积作为标本电阻率灵敏系数;然后,采用最小二乘拟合方法得到标本电阻率与灵敏系数的逼近函数,通过逼近函数计算得到样本的电阻率;最后,通过铜、铁、铝、钨以及合金导电材料的测试分析结果表明该方法计算得到的电阻率与真实电阻率的RMSE达到了10?9量级。
Newly developed conductive materials urgently need to be characterized in terms of their resistivity, but due to the scarcity of samples and the difficulty of the drawing process, it is very easy to short-circuit circuits when measuring the resistivity of conductive materials using the forced-current method. For this reason, this paper proposes a method for measuring the resistivity of conductive materials based on the opposing coils transient electromagnetic method. First, in order to avoid turn-off electromagnetic oscillations and environmental noise and to improve the signal-noise ratio, early and late plausible moment lines were constructed, and the sector area of the secondary field response curve and the early and late most plausible moment lines were used as the specimen resistivity sensitivity coefficients; Then, the approximation function of the specimen resistivity to the sensitivity coefficient was obtained using the least squares fitting method, and the resistivity of the sample was calculated from the approximation function; Finally, the results of testing and analysis of copper, iron, aluminum, tungsten, and alloy conductive materials show that the resistivity calculated by this method has an RMSE of 10?9 orders of magnitude with respect to the true resistivity.
[1] | 何继善. 金属矿电法勘探[M]. 北京: 冶金工业出版社, 1980. |
[2] | 何继善. 近区交流电阻率法及其应用[J]. 中国有色金属学报, 1994, 4(4): 1-4. |
[3] | 崔益安, 柳建新, 郭友军, 等. 电阻率法在有色金属矿产勘探中的研究进展[J]. 中国有色金属学报, 2023, 33(1): 223-239. |
[4] | 杨铁柱, 赖晓磊, 张志强, 等. 基于LabVIEW的单臂、双臂电桥仿真实验系统开发[J]. 大学物理, 2017, 36(6): 36-117. |
[5] | 隗群梅, 韩立立, 尹教建. 双臂电桥测量接触电阻的研究[J]. 物理实验, 2016, 36(1): 21-23. |
[6] | Thomson, W. (1861) On the Measurement of Electrical Resistivity. Proceedings of the Royal Society, 11, 313-328. |
[7] | 李世斌, 吕振林, 高积强, 等. 拓扑法计算硅/碳化硅材料的电阻率[J]. 中国有色金属学报, 2002, 12(S1): 83-86. |
[8] | 李友芬, 黄芝英, 孙根生, 等. La2O3基导电陶瓷室温电阻率的测试与研究[J]. 中国有色金属学报, 1996, 6(3): 138-140. |
[9] | 鲁效明. 用两种四探针方法测量硅单晶片边缘电阻率及其结果的比较[J]. 计量技术, 2002(9): 8-10. |
[10] | 陈彩云. 光伏用硅片电阻率四探针法测量值不确定度评定[J]. 计量与测试技术, 2018, 45(10): 109-112. |
[11] | 李建昌, 王永, 王丹, 等. 半导体电学特性四探针测试技术的研究现状[J]. 真空, 2011, 48(3): 1-7. |
[12] | 姚子祥, 刘洪山. 四探针法测量薄层电阻方法对比[J]. 信息记录材料, 2020, 21(3): 245-246. |
[13] | 鲁效明, 宿昌厚. 双位组合四探针法测量硅片电阻率[J]. 微电子学, 1994(3): 60-63. |
[14] | 宿昌厚, 鲁效明. 双电测组合四探针法测试半导体电阻率测准条件[J]. 计量技术, 2004(3): 7-9, 27. |
[15] | 孙如昊, 刘禹, 刘江, 等. 基于LabVIEW和Arduino的薄膜电阻率测试系统开发[J]. 自动化仪表, 2019, 40(8): 26-31, 37. |
[16] | 王伟. 四探针相关问题的研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2007. |
[17] | Oliveira, F.S., Cipriano, R.B., da Silva, F.T., Romão, E.C. and dos Santos, C.A.M. (2020) Simple Analytical Method for Determining Electrical Resistivity and Sheet Resistance Using the Van Der Pauw Procedure. Scientific Reports, 10, Article No. 16379. https://doi.org/10.1038/s41598-020-72097-1 |
[18] | 张云龙. 金属网栅透明导电膜导电性能的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017. |
[19] | 甄聪棉, 潘成福, 侯登录, 等. 低维半导体器件电阻率的测试理论与实验研究[J]. 物理实验, 2022, 42(7): 22-28. |
[20] | Geng, Y. (2022) Mathematical Analysis of Van Der Pauw’s Method for Measuring Resistivity. Journal of Physics: Conference Series, 2321, Article ID: 012027. https://doi.org/10.1088/1742-6596/2321/1/012027 |
[21] | 孙以材, 张林在. 用改进的Van der Pauw法测定方形微区的方块电阻[J]. 物理学报, 1994, 43(4): 530-539. |
[22] | 刘新福, 孙以材, 刘东升. 四探针技术测量薄层电阻的原理及应用[J]. 半导体技术, 2004, 29(7): 48-52. |
[23] | 刘新福, 孙以材, 张艳辉, 等. 用改进的Rymaszewski公式及方形四探针法测定微区的方块电阻[J]. 物理学报, 2004, 53(8): 2461-2466. |
[24] | 吴鹏飞. 基于伪测量值法的硅片薄层电阻率测试系统研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2018. |
[25] | Krupka, J. (2013) Contactless Methods of Conductivity and Sheet Resistance Measurement for Semiconductors, Conductors and Superconductors. Measurement Science and Technology, 24, Article ID: 062001. https://doi.org/10.1088/0957-0233/24/6/062001 |
[26] | The Japanese Society for Non-Destructive Inspection (1967) Handbook of Non-Destructive Inspection. The Nikkan Kogyo Shinbun, Ltd., 624-625. |
[27] | 张起祥, 张晓英. 一种电阻率测量方法[J]. 大学物理, 2003, 22(12): 27-29. |
[28] | Wakiwaka, H., Kodani, M., Endo, M. and Takahashi, Y. (2006) Non-contact Measurement of CNT Compounding Ratio in Composite Material by Eddy Current Method. Sensors and Actuators A: Physical, 129, 235-238. https://doi.org/10.1016/j.sna.2005.09.052 |
[29] | Qiu, J. and Sullivan, C.R. (2013) High-frequency Resistivity Measurement Method for Multilayer Soft Magnetic Films. IEEE Transactions on Power Electronics, 28, 3581-3590. https://doi.org/10.1109/tpel.2012.2226477 |
[30] | Yashunsky, V., Shimron, S., Lirtsman, V., Weiss, A.M., Melamed-Book, N., Golosovsky, M., et al. (2009) Real-time Monitoring of Transferrin-Induced Endocytic Vesicle Formation by Mid-Infrared Surface Plasmon Resonance. Biophysical Journal, 97, 1003-1012. https://doi.org/10.1016/j.bpj.2009.05.052 |
[31] | Baek, D., Lee, J. and Choi, B. (2014) Diffusion Length and Resistivity Distribution Characteristics of Silicon Wafer by Photoluminescence. Materials Research Bulletin, 58, 157-163. https://doi.org/10.1016/j.materresbull.2014.03.002 |
[32] | 李倩文. 基于正则化算法的硅片电阻率测量方法研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2020. |
[33] | 王梦丹. 具有温度控制的微区电阻率测量装置研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2019. |
[34] | 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9): 3428-3435. |
[35] | 王银, 席振铢, 蒋欢, 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017, 41(2): 360-363. |
[36] | 高远. 等值反磁通瞬变电磁法在城镇地质灾害调查中的应用[J]. 煤田地质与勘探, 2018, 46(3): 152-156. |