全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半空间上Choquard方程的Liouville型定理
Liouville-Type Theorem for Choquard Equation in Half-Space

DOI: 10.12677/pm.2025.154126, PP. 234-242

Keywords: Choquard方程,移动平面法,Liouville型定理
Choquard Equation
, Method of Moving Planes, Liouville-Type Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究半空间上Choquard方程 { Δu( y )= + N | u( x ˉ ,0 ) | p | ( x ˉ ,0 )y | Nα d x ˉ | u( y ) | p2 u( y ),y + N u ν ( x ˉ ,0 )=

References

[1]  Bartsch, T., Liu, Y. and Liu, Z. (2020) Normalized Solutions for a Class of Nonlinear Choquard Equations. SN Partial Differential Equations and Applications, 1, Article No. 34.
https://doi.org/10.1007/s42985-020-00036-w
[2]  Ackermann, N. (2004) On a Periodic Schrödinger Equation with Nonlocal Superlinear Part. Mathematische Zeitschrift, 248, 423-443.
https://doi.org/10.1007/s00209-004-0663-y
[3]  Choquard, P., Stubbe, J. and Vuffray, M. (2008) Stationary Solutions of the Schrödinger-Newton Model—An ODE Approach. Differential and Integral Equations, 21, 665-679.
https://doi.org/10.57262/die/1356038617
[4]  Bahrami, M., Großardt, A., Donadi, S. and Bassi, A. (2014) The Schrödinger-Newton Equation and Its Foundations. New Journal of Physics, 16, Article 115007.
https://doi.org/10.1088/1367-2630/16/11/115007
[5]  Chen, W. and Li, C. (1991) Classification of Solutions of Some Nonlinear Elliptic Equations. Duke Mathematical Journal, 63, 615-622.
https://doi.org/10.1215/s0012-7094-91-06325-8
[6]  Chen, W., Li, C. and Li, Y. (2017) A Direct Method of Moving Planes for the Fractional Laplacian. Advances in Mathematics, 308, 404-437.
https://doi.org/10.1016/j.aim.2016.11.038
[7]  Chen, W., Li, C. and Ou, B. (2005) Classification of Solutions for an Integral Equation. Communications on Pure and Applied Mathematics, 59, 330-343.
https://doi.org/10.1002/cpa.20116
[8]  Yu, X. (2011) Liouville Type Theorems for Integral Equations and Integral Systems. Calculus of Variations and Partial Differential Equations, 46, 75-95.
https://doi.org/10.1007/s00526-011-0474-z
[9]  Yu, X. (2016) Liouville Type Theorems for Singular Integral Equations and Integral Systems. Communications on Pure and Applied Analysis, 15, 1825-1840.
https://doi.org/10.3934/cpaa.2016017
[10]  赵晓军, 余晓辉. 一类Choquard型方程正解的非存在性结果[J]. 中国科学: 数学, 2017, 47(6): 713-722.
[11]  李泓桥. 半空间上Hartree方程的Liouville型定理[J]. 数学物理学报, 2021, 41(2): 388-401.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133