|
Pure Mathematics 2025
半空间上Choquard方程的Liouville型定理
|
Abstract:
本文研究半空间上Choquard方程
[1] | Bartsch, T., Liu, Y. and Liu, Z. (2020) Normalized Solutions for a Class of Nonlinear Choquard Equations. SN Partial Differential Equations and Applications, 1, Article No. 34. https://doi.org/10.1007/s42985-020-00036-w |
[2] | Ackermann, N. (2004) On a Periodic Schrödinger Equation with Nonlocal Superlinear Part. Mathematische Zeitschrift, 248, 423-443. https://doi.org/10.1007/s00209-004-0663-y |
[3] | Choquard, P., Stubbe, J. and Vuffray, M. (2008) Stationary Solutions of the Schrödinger-Newton Model—An ODE Approach. Differential and Integral Equations, 21, 665-679. https://doi.org/10.57262/die/1356038617 |
[4] | Bahrami, M., Großardt, A., Donadi, S. and Bassi, A. (2014) The Schrödinger-Newton Equation and Its Foundations. New Journal of Physics, 16, Article 115007. https://doi.org/10.1088/1367-2630/16/11/115007 |
[5] | Chen, W. and Li, C. (1991) Classification of Solutions of Some Nonlinear Elliptic Equations. Duke Mathematical Journal, 63, 615-622. https://doi.org/10.1215/s0012-7094-91-06325-8 |
[6] | Chen, W., Li, C. and Li, Y. (2017) A Direct Method of Moving Planes for the Fractional Laplacian. Advances in Mathematics, 308, 404-437. https://doi.org/10.1016/j.aim.2016.11.038 |
[7] | Chen, W., Li, C. and Ou, B. (2005) Classification of Solutions for an Integral Equation. Communications on Pure and Applied Mathematics, 59, 330-343. https://doi.org/10.1002/cpa.20116 |
[8] | Yu, X. (2011) Liouville Type Theorems for Integral Equations and Integral Systems. Calculus of Variations and Partial Differential Equations, 46, 75-95. https://doi.org/10.1007/s00526-011-0474-z |
[9] | Yu, X. (2016) Liouville Type Theorems for Singular Integral Equations and Integral Systems. Communications on Pure and Applied Analysis, 15, 1825-1840. https://doi.org/10.3934/cpaa.2016017 |
[10] | 赵晓军, 余晓辉. 一类Choquard型方程正解的非存在性结果[J]. 中国科学: 数学, 2017, 47(6): 713-722. |
[11] | 李泓桥. 半空间上Hartree方程的Liouville型定理[J]. 数学物理学报, 2021, 41(2): 388-401. |