|
Pure Mathematics 2025
混合约束长度满足问题的分簇相变
|
Abstract:
随机约束满足问题解空间的结构与问题的难解性之间具有紧密的内在联系。针对随机约束满足问题中固定约束长度模型与实际场景中非均匀约束的差异性,提出了具有混合约束长度的RBmix模型。基于统计物理的序参量理论,利用解对间Hamming距离演化分析与矩方法相结合,揭示了混合约束满足问题模型解空间的分簇相变。结果表明,当控制参数达到临界阈值时,解空间发生从复本对称态到统计可分簇态的相变,其特征表现为解集内部涌现指数级规模的子簇,且相邻子簇间存在超Hamming距离的能量壁垒。这揭示了分簇相变过程中解空间连通性的突变规律为基于相变特征的组合优化算法设计提供了理论依据。
There exists a profound intrinsic connection between the structure of the solution space and the computational hardness of random constraint satisfaction problems (CSPs). To address the discrepancy between fixed constraint length models in random CSPs and the non-uniform constraints in real-world scenarios, the RBmix model with mixed constraint lengths has been proposed. Leveraging the order parameter theory from statistical physics and combining the analysis of Hamming distance evolution between solution pairs with the moment method, the clustering phase transition in the solution space of the mixed constraint satisfaction problem model has been revealed. The results demonstrate that when the control parameter reaches a critical threshold, the solution space undergoes a phase transition from a replica-symmetric state to a statistically clustered state. This transition is characterized by the emergence of exponentially many sub-clusters within the solution set, accompanied by energy barriers of ultra-Hamming distances between adjacent sub-clusters. This reveals the abrupt change in the connectivity of the solution space during the clustering phase transition, providing a theoretical foundation for the design of combinatorial optimization algorithms based on phase transition characteristics.
[1] | 杜立智, 陈和平, 符海东. NP完全问题研究及前景剖析[J]. 武汉工程大学学报, 2015, 37(10): 73-78. |
[2] | Smith, B.M. and Dyer, M.E. (1996) Locating the Phase Transition in Binary Constraint Satisfaction Problems. Artificial Intelligence, 81, 155-181. https://doi.org/10.1016/0004-3702(95)00052-6 |
[3] | Gent, I.P., Macintyre, E., Prosser, P., Smith, B.M. and Walsh, T. (2001) Random Constraint Satisfaction: Flaws and Structure. Constraints, 6, 345-372. https://doi.org/10.1023/a:1011454308633 |
[4] | Prosser, P. (1996) An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems. Artificial Intelligence, 81, 81-109. https://doi.org/10.1016/0004-3702(95)00048-8 |
[5] | Achlioptas, D., Molloy, M.S.O., Kirousis, L.M., Stamatiou, Y.C., Kranakis, E. and Krizanc, D. (2001) Random Constraint Satisfaction: A More Accurate Picture. Constraints, 6, 329-344. https://doi.org/10.1023/a:1011402324562 |
[6] | Fan, Y. and Shen, J. (2011) On the Phase Transitions of Random K-Constraint Satisfaction Problems. Artificial Intelligence, 175, 914-927. https://doi.org/10.1016/j.artint.2010.11.004 |
[7] | Zhou, G., Gao, Z. and Liu, J. (2014) On the Constraint Length of Random k-CSP. Journal of Combinatorial Optimization, 30, 188-200. https://doi.org/10.1007/s10878-014-9731-3 |
[8] | Zhou, G., Gao, Z. and Liu, J. (2016) The Scaling Window of the Model d-k-CSP. Journal of Mathematical Analysis and Applications, 434, 342-352. https://doi.org/10.1016/j.jmaa.2015.09.015 |
[9] | 赵春艳, 范如梦, 刘雅楠. 不同紧度下约束满足问题的相变现象[J]. 计算机应用研究, 2020, 37(9): 2739-2743. |
[10] | Xu, K. and Li, W. (2000) Exact Phase Transitions in Random Constraint Satisfaction Problems. Journal of Artificial Intelligence Research, 12, 93-103. https://doi.org/10.1613/jair.696 |
[11] | Xu, K. and Li, W. (2006) Many Hard Examples in Exact Phase Transitions. Theoretical Computer Science, 355, 291-302. https://doi.org/10.1016/j.tcs.2006.01.001 |
[12] | Šulc, P. and Zdeborová, L. (2010) Belief Propagation for Graph Partitioning. Journal of Physics A: Mathematical and Theoretical, 43, Article ID: 285003. https://doi.org/10.1088/1751-8113/43/28/285003 |
[13] | Mézard, M., Mora, T. and Zecchina, R. (2005) Clustering of Solutions in the Random Satisfiability Problem. Physical Review Letters, 94, Article ID: 197205. https://doi.org/10.1103/physrevlett.94.197205 |
[14] | Achlioptas, D., Coja‐Oghlan, A. and Ricci‐Tersenghi, F. (2011) On the Solution‐Space Geometry of Random Constraint Satisfaction Problems. Random Structures & Algorithms, 38, 251-268. https://doi.org/10.1002/rsa.20323 |
[15] | Xu, W., Zhang, P., Liu, T. and Gong, F. (2015) The Solution Space Structure of Random Constraint Satisfaction Problems with Growing Domains. Journal of Statistical Mechanics: Theory and Experiment, 2015, P12006. https://doi.org/10.1088/1742-5468/2015/12/p12006 |
[16] | Xu, W. and Zhang, Z. (2022) The Solution Space Structure of Planted Constraint Satisfaction Problems with Growing Domains. Journal of Statistical Mechanics: Theory and Experiment, 2022, Article ID: 033401. https://doi.org/10.1088/1742-5468/ac4e86 |
[17] | Zhao, C. and Zheng, Z. (2011) Threshold Behaviors of a Random Constraint Satisfaction Problem with Exact Phase Transitions. Information Processing Letters, 111, 985-988. https://doi.org/10.1016/j.ipl.2011.07.006 |