|
基于知识库的核电厂压力变送器可靠性评估
|
Abstract:
针对核电厂压力变送器可靠性评估中传统方法(如鉴定试验、电路仿真)难以量化元器件的随机失效对压力变送器可靠性影响的问题,提出一种基于知识库的模型驱动可靠性评估方法。采用FIGARO建模语言构建描述压力变送器电路元器件失效模式与后果的知识库;基于知识库在Model Builder平台中构建图形化描述模型并自动生成故障树;结合FIDES可靠性模型计算元器件失效率,利用XFTA和YAMS软件分别开展故障树定量分析与蒙特卡洛仿真。结果表明,严重事故后360小时时,压力变送器不可用度为0.00415858 (XFTA)与0.00405161 (YAMS),两者相对误差为2.58%,同时最小割集分析表明运算放大器为电路关键元器件。该方法验证了模型驱动方法在复杂仪表系统可靠性评估中的有效性,可提高核电厂关键仪表可靠性评价的规范性和效率。
To address the challenge in nuclear power plant pressure transmitter reliability assessment where traditional methods (e.g., qualification testing, circuit simulation) struggle to quantify the impact of random component failures on system reliability, this study proposes a knowledge base-driven model-based reliability assessment approach. By employing the FIGARO modeling language, a knowledge base describing failure modes and consequences of pressure transmitter circuit components is constructed. Based on this knowledge base, a graphical descriptive model is developed in the Model Builder platform, from which a fault tree is automatically generated. Component failure rates are calculated using the FIDES reliability model, followed by quantitative fault tree analysis and Monte Carlo simulation through XFTA and YAMS software, respectively. Results demonstrate that the system unavailability at 360 hours post-severe accident is 0.00415858 (XFTA) and 0.00405161 (YAMS), with a relative error of 2.58%. Minimal cut set analysis further identifies operational amplifiers as critical components in the circuit. This method validates the effectiveness of the model-driven approach for reliability assessment of complex instrumentation systems, significantly enhancing the standardization and efficiency of reliability evaluation for critical nuclear power plant instruments.
[1] | 朱夏虹. 核工程检测技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009. |
[2] | IEC (2001) IEC 61513 Nuclear Power Plants-Instrumentation and Control for Systems Important to Safety-General Requirements for Systems. |
[3] | 杨忠勤. 核电设备严重事故鉴定标准建设[J]. 核标准计量与质量, 2011(4): 23-25. |
[4] | 邹树梁, 黄有骏. 核电厂事故温度环境对压力变送器的影响分析[J]. 南华大学学报(自然科学版), 2014, 28(1): 1-4, 16. |
[5] | 黄有骏. 核电厂严重事故下仪表可用性评价方法研究[D]: [硕士学位论文]. 衡阳: 南华大学, 2014. |
[6] | 王肖宇, 张心怡, 殷晶, 等. 基于电路仿真技术的核电厂仪表可用性评价[C]//中国核学会2019年学术年会论文集. 北京: 中国原子能出版社, 2019: 274-283. |
[7] | 陈垦伦, 关敏仪, 梁佩博, 等. 基于FMEA的某型高温熔盐压力变送器可靠性分析[J]. 电子产品可靠性与环境试验, 2023, 41(2): 33-39. |
[8] | 冯翠. 复合式电容压力变送器的开发和应用[J]. 流体测量与控制, 2023, 4(6): 51-55. |
[9] | 徐思敏, 陈浠毓, 黄素文. MBRA在核电厂仪控系统可靠性分析中的应用研究[J]. 自动化仪表, 2023, 44(z1): 84-87, 91. |
[10] | Prosvirnova, T. (2014) AltaRica 3.0: A Model-Based Approach for Safety Analyses. Master’s Thesis. https://www.researchgate.net/publication/278827421 |
[11] | FIDES Guide 2009 Edition: A Reliability Methodology for Electronic Systems. http://www.fides-reliability.org |
[12] | 高成, 陈炳印, 黄姣英, 等. 多失效机理下基于FIDES的MEMS失效率预计研究[J]. 微电子学, 2020, 50(5): 743-749. |
[13] | 冒天诚. 故障树与船舶自动控制系统的故障诊断[M]. 大连: 大连海事大学出版社, 2000: 16-17. |
[14] | 刘雪. 模型驱动的嵌入式系统设计安全性验证方法研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2015. |
[15] | 宋龙飞, 陈玉清, 金振俊. 基于故障树和产生式规则的故障诊断专家系统设计[J]. 中国舰船研究, 2024, 19(z1): 84-92. |