全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学及分子对接探讨桂枝去芍药加麻辛附子汤治疗脓毒症心功能障碍的作用机制
Investigating the Mechanism of Cinnamon Twig Decoction without Peony Combined with Ephedra and Aconite and Asarum Decoction in Treating SIMD Based on Network Pharmacology and Molecular Docking

DOI: 10.12677/jcpm.2025.42297, PP. 1232-1245

Keywords: 网络药理学,分子对接,SIMD,脓毒血症,心肌损伤,桂枝去芍药加麻辛附子汤
Network Pharmacology
, Molecular Docking, SIMD, Sepsis, Myocardial Injury, Cinnamon Twig Decoction without Peony Combined with Ephedra and Aconite and Asarum Decoction

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:本研究通过网络药理学及分子对接对桂枝去芍药加麻辛附子汤的有效成分及其治疗脓毒症心功能障碍的作用机制进行研究。方法:首先利用TCMSP平台检索桂枝去芍药加麻辛附子汤中7味中药的活性成分,在PubChem、Swiss Target Prediction平台搜索得到药物作用靶点,并通过GeneCards等数据库筛选出治疗SIMD的疾病作用靶点,取药物–疾病交集靶点通过Cytoscape 3.10.2构建药物–成分–靶点–疾病网络,从中筛选得到关键活性成分,并将交集靶点导入STRING数据库中处理后将结果导入Cytoscape软件,进一步构建PPI网络图,筛选到核心靶点,再将交集靶点通过DAVID数据库处理后进行GO功能富集分析,最后将从药物–成分–靶点–疾病网络中进行拓扑分析得到的关键活性成分与核心靶点进行分子对接。结果:分析结果显示根据条件筛选后得到甘草查尔酮A、6-甲基姜二醇双乙酸2、2,7-二去乙酰基-2,7-二苯酰–云南紫杉宁等142个中药活性成分和1172个药物成分作用靶点和2379个疾病作用靶点,取交集得到丝氨酸/苏氨酸激酶1、肿瘤坏死因子、白介素-6、甘油醛-3-磷酸脱氢酶等418个交集靶点,基因本体(GO)功能富集分析得到1746个GO条目(P < 0.01),京都基因与基因组百科全书(KEGG)通路富集分析富集得到197条信号通路(P < 0.05),主要涉及癌症中的通路、脂质与动脉粥样硬化、AGE-RAGE信号通路在糖尿病并发症中的作用等信号通路。分子对接结果显示关键活性成分与核心靶点均能稳定结合,结合能均<?5.0 kcal/mol。结论:研究初步揭示了桂枝去芍药加麻辛附子汤通过多成分–多靶点–多通路治疗SIMD的作用机制,为桂枝去芍药加麻辛附子汤治疗SIMD提供了理论依据。
Objective: This study investigated the effective components and action mechanisms of cinnamon twig decoction without peony combined with ephedra and aconite and asarum decoction in treating sepsis-induced myocardial dysfunction (SIMD) through network pharmacology and molecular docking. Methods: First, the active components of the seven herbs in cinnamon twig decoction without peony combined with ephedra and aconite and asarum decoction were retrieved using the TCMSP platform. The drug targets were identified via PubChem and Swiss Target Prediction platforms, while disease targets for SIMD were selected using GeneCards and other databases. The intersection of drug and disease targets was used to construct a drug-component-target-disease network using Cytoscape 3.10.2. Key active components were then selected from this network. The intersection targets were further processed in the STRING database and used to construct a PPI network in Cytoscape. Core targets were identified, and GO function enrichment analysis was performed using the DAVID database. Finally, molecular docking was conducted between the key active components and core targets identified through topological analysis of the drug-component-target-disease network. Results: The analysis revealed 142 active compounds, including licochalcone A, 6-methylgingediacetate2, and 2,7-Dideacetyl-2,7-dibenzoyl-taxayunnanine F, as well as 1172 drug targets and 2379 disease targets. The intersection of these targets included 418 common targets, such as serine/threonine kinase 1, tumor necrosis factor (TNF), interleukin-6 (IL-6), and

References

[1]  胡艳茹, 谢凤杰, 吕长安, 等. 参附注射液对脓毒血症心肌损伤保护作用的临床研究[J]. 中国中医急症, 2016, 25(8): 1619-1621.
[2]  Waisbren, B.A. (1951) Bacteremia Due to Gram-Negative Bacilli Other than the Salmonella: A Clinical and Therapeutic Study. A.M.A. Archives of Internal Medicine, 88, 467-488.
https://doi.org/10.1001/archinte.1951.03810100051005
[3]  董妍, 董旭, 于盼盼, 施保柱. 温阳化瘀解毒法治疗脓毒症心功能障碍的临床观察[J]. 中国实验方剂学杂志, 2019, 25(14): 125-129.
[4]  包祖晓, 胡灵敏, 柯干. 桂枝去芍药加麻黄附子细辛汤在心肺急症中的应用[J]. 中国医药学报, 2004, 19(11): 677-678.
[5]  Liu, A.L., Du, G.H. (2010) Network Pharmacology: New Guidelines for Drug Discovery. Acta Pharmacologica Sinica, 45, 1472-1477.
[6]  Wang, Y.H. and Yang, L. (2013) Systems Pharmacology-Based Research Framework of Traditional Chinese Medicine. World Chinese Medicine, 8, 801-808.
[7]  任洁, 魏静. 分子对接技术在中药研究中的应用[J]. 中国中医药信息杂志, 2014, 21(1): 123-125.
[8]  Hanumanthu, B.K.J., Nair, A.S., Katamreddy, A., Gilbert, J.S., You, J.Y., Offor, O.L., et al. (2021) Sepsis-Induced Cardiomyopathy Is Associated with Higher Mortality Rates in Patients with Sepsis. Acute and Critical Care, 36, 215-222.
https://doi.org/10.4266/acc.2021.00234
[9]  Furusawa, J., Funakoshi-Tago, M., Mashino, T., Tago, K., Inoue, H., Sonoda, Y., et al. (2009) Glycyrrhiza inflata-Derived Chalcones, Licochalcone A, Licochalcone B and Licochalcone D, Inhibit Phosphorylation of NF-κB P65 in LPS Signaling Pathway. International Immunopharmacology, 9, 499-507.
https://doi.org/10.1016/j.intimp.2009.01.031
[10]  凌珅, 吴梦玮. 甘草查尔酮A对H2O2所致心肌细胞损伤的保护作用研究[J]. 世界中西医结合杂志, 2018, 13(11): 1544-1548.
[11]  Paniagua-Pérez, R., Flores-Mondragón, G., Reyes-Legorreta, C., Herrera-López, B., Cervantes-Hernández, I., Madrigal-Santillán, O., et al. (2016) Evaluation of the Anti-Inflammatory Capacity of Beta-Sitosterol in Rodent Assays. African Journal of Traditional, Complementary and Alternative medicines, 14, 123-130.
https://doi.org/10.21010/ajtcam.v14i1.13
[12]  Zhao, D., Zheng, L., Qi, L., Wang, S., Guan, L., Xia, Y., et al. (2016) Structural Features and Potent Antidepressant Effects of Total Sterols and β-Sitosterol Extracted from Sargassum horneri. Marine Drugs, 14, Article 123.
https://doi.org/10.3390/md14070123
[13]  陈元堃, 曾奥, 罗振辉, 等. β-谷甾醇药理作用研究进展[J]. 广东药科大学学报, 2021, 37(1): 148-153.
[14]  Devi, K.P., Malar, D.S., Nabavi, S.F., Sureda, A., Xiao, J., Nabavi, S.M., et al. (2015) Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacological Research, 99, 1-10.
https://doi.org/10.1016/j.phrs.2015.05.002
[15]  Chen, M., Xiao, J., El-Seedi, H.R., et al. (2022) Kaempferol and Atherosclerosis: From Mechanism to Medicine. Critical Reviews in Food Science and Nutrition, 64, 2157-2175.
https://doi.org/10.1080/10408398.2022.2121261
[16]  Xue, Y., Li, H., Zhang, Y., Han, X., Zhang, G., Li, W., et al. (2018) Natural and Synthetic Flavonoids, Novel Blockers of the Volume-Regulated Anion Channels, Inhibit Endothelial Cell Proliferation. Pflügers Archiv-European Journal of Physiology, 470, 1473-1483.
https://doi.org/10.1007/s00424-018-2170-8
[17]  刘杰, 刘广学, 尚明英, 等. 华细辛和北细辛HPLC特征图谱识别与抗炎靶点及抗炎成分分析[J]. 中国中药杂志, 2020, 45(6): 1374-1383.
[18]  Zou, M. and Xie, Z. (2013) Regulation of Interplay between Autophagy and Apoptosis in the Diabetic Heart. Autophagy, 9, 624-625.
https://doi.org/10.4161/auto.23577
[19]  Chen, C., Zong, M., Lu, Y., Guo, Y., Lv, H., Xie, L., et al. (2020) Differentially Expressed Lnc‐NOS2P3‐miR‐939‐5p Axis in Chronic Heart Failure Inhibits Myocardial and Endothelial Cells Apoptosis via iNOS/TNFα Pathway. Journal of Cellular and Molecular Medicine, 24, 11381-11396.
https://doi.org/10.1111/jcmm.15740
[20]  刁一芮. 基于系统药理学研究清肺理痰方治疗急性肺损伤的机制[D]: [硕士学位论文]. 北京: 北京中医药大学, 2022.
[21]  庄海舟, 沈潞华. 脓毒症时心肌损伤发生机制研究进展[J]. 实用医学杂志, 2008, 24(24): 4313-4315.
[22]  Gao, X., Wang, X., Pham, T.H., Feuerbacher, L.A., Lubos, M., Huang, M., et al. (2013) NleB, a Bacterial Effector with Glycosyltransferase Activity, Targets GAPDH Function to Inhibit NF-κB Activation. Cell Host & Microbe, 13, 87-99.
https://doi.org/10.1016/j.chom.2012.11.010
[23]  Waghela, B.N., Vaidya, F.U., Ranjan, K., Chhipa, A.S., Tiwari, B.S. and Pathak, C. (2020) AGE-RAGE Synergy Influences Programmed Cell Death Signaling to Promote Cancer. Molecular and Cellular Biochemistry, 476, 585-598.
https://doi.org/10.1007/s11010-020-03928-y
[24]  Lu, T., Lahousse, L., Wijnant, S., Chen, J., Brusselle, G.G., van Hoek, M., et al. (2024) The AGE-RAGE Axis Associates with Chronic Pulmonary Diseases and Smoking in the Rotterdam Study. Respiratory Research, 25, Article No. 85.
https://doi.org/10.1186/s12931-024-02698-1
[25]  Zhang, T., Ma, C., Zhang, Z., Zhang, H. and Hu, H. (2021) NF‐κB Signaling in Inflammation and Cancer. MedComm, 2, 618-653.
https://doi.org/10.1002/mco2.104

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133