|
基于决策树的Wi-Fi网络链路质量估计方法研究
|
Abstract:
目前机器学习正在成为Wi-Fi链路质量估计的主要工具,模型的泛化能力对于链路质量估计尤为重要。现有方法在训练模型时,需要在不同条件下采集多组数据,建立模型的成本较高,并且多数使用较复杂的模型。提出一种基于决策树的链路质量估计方法,在预处理阶段对数据进行最小值填充和EWMA处理,选择RSSI和RSSI均值作为模型输入参数,利用一组噪声条件下采集的数据建模,分别进行链路质量分类和回归估计。与现有方法比较,提出的方法以较少的数据就可以获得良好的泛化性能。实验结果表明,该方法的平均准确率达到96%,训练时间为0.01 s,回归估计的平均绝对误差为0.025。
Currently, machine learning is emerging as a primary tool for Wi-Fi link quality estimation, with the model’s generalization ability being particularly crucial for accurate estimations. Traditional methods often require collecting multiple datasets under varying conditions to train the models, leading to high costs and often relying on complex model architectures. This paper presents a link quality estimation approach based on decision trees. In the preprocessing stage, the data undergoes minimum value filling and exponentially weighted moving average (EWMA) filtering. The model inputs are selected as the RSSI value and its mean, and the modeling is performed using data collected under noisy conditions. This approach performs both link quality classification and regression estimation. Experimental results demonstrate that with a relatively small amount of data, this method achieves excellent generalization performance, yielding a classification accuracy of 96%, a training time of 0.01 seconds, and an average absolute error of 0.025 for regression estimation.
[1] | Szott, S., Kosek-Szott, K., Gawlowicz, P., Gomez, J.T., Bellalta, B., Zubow, A., et al. (2022) Wi-Fi Meets ML: A Survey on Improving IEEE 802.11 Performance with Machine Learning. IEEE Communications Surveys & Tutorials, 24, 1843-1893. https://doi.org/10.1109/comst.2022.3179242 |
[2] | De Couto, D.S.J., Aguayo, D., Bicket, J. and Morris, R. (2003) A High-Throughput Path Metric for Multi-Hop Wireless Routing. Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, 14-19 September 2003, 134-146. https://doi.org/10.1145/938985.939000 |
[3] | Millan, P., Aliagas, C., Molina, C., Dimogerontakis, E. and Meseguer, R. (2019) Time Series Analysis to Predict End-To-End Quality of Wireless Community Networks. Electronics, 8, Article 578. https://doi.org/10.3390/electronics8050578 |
[4] | Bi, J., Li, S., Yuan, H., Zhao, Z. and Liu, H. (2019) Deep Neural Networks for Predicting Task Time Series in Cloud Computing Systems. 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, 9-11 May 2019, 86-91. https://doi.org/10.1109/icnsc.2019.8743188 |
[5] | Gupta, P. and Kumar, P.R. (2000) The Capacity of Wireless Networks. IEEE Transactions on Information Theory, 46, 388-404. https://doi.org/10.1109/18.825799 |
[6] | Iyer, A., Rosenberg, C. and Karnik, A. (2006) What Is the Right Model for Wireless Channel Interference? Proceedings of the 3rd International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, Waterloo, 7-9 August 2006, 2-es. https://doi.org/10.1145/1185373.1185376 |
[7] | Kudelski, M., Gambardella, L.M. and Di Caro, G.A. (2014) A Mobility-Controlled Link Quality Learning Protocol for Multi-Robot Coordination Tasks. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong SAR, 31 May-7 June 2014, 5024-5031. https://doi.org/10.1109/icra.2014.6907595 |
[8] | 翁丽娜, 杨杰, 柯海舟, 等. 基于时间序列分析的链路质量预测和稳定路由算法研究[J]. 电子与信息学报, 2011, 33(4): 885-890. |
[9] | Millan, P., Molina, C., Medina, E., Vega, D., Meseguer, R., Braem, B., et al. (2015) Time Series Analysis to Predict Link Quality of Wireless Community Networks. Computer Networks, 93, 342-358. https://doi.org/10.1016/j.comnet.2015.07.021 |
[10] | Bote-Lorenzo, M.L., Gómez-Sánchez, E., Mediavilla-Pastor, C. and Asensio-Pérez, J.I. (2018) Online Machine Learning Algorithms to Predict Link Quality in Community Wireless Mesh Networks. Computer Networks, 132, 68-80. https://doi.org/10.1016/j.comnet.2018.01.005 |
[11] | Okamoto, H., Nishio, T., Morikura, M., Yamamoto, K., Murayama, D. and Nakahira, K. (2017) Machine-Learning-Based Throughput Estimation Using Images for mmWave Communications. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, 4-7 June 2017, 1-6. https://doi.org/10.1109/vtcspring.2017.8108570 |
[12] | Li, C., Chen, S., Kuo, C. and Chiu, C. (2020) Practical Machine Learning-Based Rate Adaptation Solution for Wi-Fi NICS: IEEE 802.11ac as a Case Study. IEEE Transactions on Vehicular Technology, 69, 10264-10277. https://doi.org/10.1109/tvt.2020.3004471 |
[13] | Cerar, G., Yetgin, H., Mohorcic, M. and Fortuna, C. (2020) On Designing a Machine Learning Based Wireless Link Quality Classifier. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, 31 August-3 September 2020, 1-7. https://doi.org/10.1109/pimrc48278.2020.9217171 |
[14] | Cerar, G., Yetgin, H., Mohorcic, M. and Fortuna, C. (2021) Learning to Fairly Classify the Quality of Wireless Links. 2021 16th Annual Conference on Wireless On-Demand Network Systems and Services Conference (WONS), Klosters, 9-11 March 2021, 1-8. https://doi.org/10.23919/wons51326.2021.9415540 |
[15] | Abdel-Nasser, M., Mahmoud, K., Omer, O.A., Lehtonen, M. and Puig, D. (2020) Link Quality Prediction in Wireless Community Networks Using Deep Recurrent Neural Networks. Alexandria Engineering Journal, 59, 3531-3543. https://doi.org/10.1016/j.aej.2020.05.037 |
[16] | 张书毓, 施伟斌, 王文龙, 等. 基于线性回归的无线传感器网络链路 质量估计方法研究[J].计算机应用研究, 2022, 39(7): 2132-2136. |
[17] | Kaul, S.K., Gruteser, M. and Seskar, I. (2006) Creating Wireless Multi-Hop Topologies on Space-Constrained Indoor Testbeds through Noise Injection. 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, Barcelona, 1-3 March 2006, 511-521. https://doi.org/10.1109/tridnt.2006.1649191 |
[18] | Fu, S., Zhang, Y., Jiang, Y., Hu, C., Shih, C. and Marron, P.J. (2015) Experimental Study for Multi-Layer Parameter Configuration of WSN Links. 2015 IEEE 35th International Conference on Distributed Computing Systems, Columbus, 29 June-2 July 2015, 369-378. https://doi.org/10.1109/icdcs.2015.45 |
[19] | Chen, Y.L., Wiesel, A. and Hero, A.O. (2011) Robust Shrinkage Estimation of High-Dimensional Covariance Matrices. IEEE Transactions on Signal Processing, 59, 4097-4107. https://doi.org/10.1109/tsp.2011.2138698 |
[20] | Haute, T.V., Poorter, E.D., Lemic, F., Handziski, V., Wirström, N., Voigt, T., et al. (2015) Platform for Benchmarking of Rf-Based Indoor Localization Solutions. IEEE Communications Magazine, 53, 126-133. https://doi.org/10.1109/mcom.2015.7263356 |
[21] | Anderson, E., Yee, G., Phillips, C., Sicker, D. and Grunwald, D. (2009) The Impact of Directional Antenna Models on Simulation Accuracy. 2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Seoul, 23-27 June 2009, 1-7. https://doi.org/10.1109/wiopt.2009.5291643 |
[22] | Bote-Lorenzo, M.L., Gómez-Sánchez, E., Mediavilla-Pastor, C. and Asensio-Pérez, J.I. (2018) Online Machine Learning Algorithms to Predict Link Quality in Community Wireless Mesh Networks. Computer Networks, 132, 68-80. https://doi.org/10.1016/j.comnet.2018.01.005 |