|
基于VMD改进算法的铣削颤振仿真识别
|
Abstract:
颤振是机床铣削加工中的关键问题,严重影响加工效率与工件质量,因此早期颤振检测具有重要意义。本文提出一种基于优化变分模态分解与功率谱熵结合的铣削颤振识别方法。针对变分模态分解参数选择难题,采用麻雀搜索算法与最小包络熵相结合的自适应优化策略,实现参数高效寻优;基于分解信号能量比筛选本征模态分量,重构信号以去除噪声干扰;引入功率谱熵作为颤振识别指标,提取仿真信号特征并实现颤振状态的精准识别。实验结果表明,该方法能够有效检测颤振状态。
Chatter is a critical issue in machine tool milling, seriously affecting machining efficiency and workpiece quality, so early chatter detection is of great significance. This paper proposes a milling chatter identification method based on optimized variational mode decomposition (VMD) and power spectrum entropy (PSE). To address the challenge of VMD parameters selection, an adaptive optimization strategy combining sparrow search algorithm (SSA) and minimum envelope entropy (EE) is adopted to achieve efficient parameters optimization. Based on the energy ratio of the decomposed signals, intrinsic mode functions (IMFs) are selected to reconstruct the signals and eliminate noise interference. PSE is introduced as a chatter identification index to extract characteristics of simulated signal and achieve accurate identification of chatter states. Experimental results demonstrate that the proposed method can effectively detect chatter.
[1] | 胡瑞飞, 殷鸣, 刘雁, 等. 切削稳定性约束下的铣削参数优化技术研究[J]. 机械工程学报, 2017, 53(5): 190-198. |
[2] | 吕凯波, 娄培生, 谷丰收, 等. 基于声压信号能量峭度的早期切削颤振预警技术研究[J]. 振动与冲击, 2021, 40(20): 50-55. |
[3] | Liu, X. (2018) Intelligent Machining Technology in Cutting Process. Journal of Mechanical Engineering, 54, 45-61. |
[4] | Kang, J., Feng, C., Hu, H. and Shao, Q. (2007) Research on Chatter Prediction and Monitor Based on DHMM Pattern Recognition Theory. 2007 IEEE International Conference on Automation and Logistics, Jinan, 18-21 August 2007, 1368-1372. https://doi.org/10.1109/ical.2007.4338783 |
[5] | Gao, J., Song, Q. and Liu, Z. (2018) Chatter Detection and Stability Region Acquisition in Thin-Walled Workpiece Milling Based on CMWT. The International Journal of Advanced Manufacturing Technology, 98, 699-713. https://doi.org/10.1007/s00170-018-2306-1 |
[6] | Fu, Y., Zhang, Y., Zhou, H., Li, D., Liu, H., Qiao, H., et al. (2016) Timely Online Chatter Detection in End Milling Process. Mechanical Systems and Signal Processing, 75, 668-688. https://doi.org/10.1016/j.ymssp.2016.01.003 |
[7] | Liu, C., Zhu, L. and Ni, C. (2018) Chatter Detection in Milling Process Based on VMD and Energy Entropy. Mechanical Systems and Signal Processing, 105, 169-182. https://doi.org/10.1016/j.ymssp.2017.11.046 |
[8] | Dragomiretskiy, K. and Zosso, D. (2014) Variational Mode Decomposition. IEEE Transactions on Signal Processing, 62, 531-544. https://doi.org/10.1109/tsp.2013.2288675 |
[9] | Xue, J. and Shen, B. (2020) A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8, 22-34. https://doi.org/10.1080/21642583.2019.1708830 |
[10] | 李永琪, 彭珍瑞. 参数优化VMD和SVM的滚动轴承故障诊断[J]. 机械科学与技术, 2022, 41(10): 1509-1514. |
[11] | 孙朝阳, 彭芳瑜, 唐小卫, 等. 基于自适应变分模态分解与功率谱熵差的机器人铣削加工颤振类型辨识[J]. 机械工程学报, 2023, 59(9): 90-100. |
[12] | 金鸿宇. 薄壁件侧铣颤振与变形实时监控技术研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017. |