|
融合画像约束和潜在特征的深度推荐算法
|
Abstract:
基于深度学习的推荐算法已成为推荐系统领域的研究趋势。然而,大多数现有工作仅考虑单一的用户与物品交互数据,限制了算法的预测性能。本文提出一种画像约束的编码方式,并融合隐因子模型中的潜在特征,丰富了推荐算法的输入以提升评分预测的准确性。该算法利用矩阵分解得到潜在特征初始化用户与物品的嵌入,然后通过线性注意力机制增强模型对画像特征的敏感度,最后结合深度神经网络进行评分预测。通过本文算法与其他基线算法在MovieLens与Netflix数据集上进行对比,该算法与基线算法相比显著提高了评分预测的精度,并在推荐列表排序性能等方面表现出色。本文的研究揭示了加入用户与物品的画像约束和潜在特征,可以有效提升推荐系统的性能。
Recommendation algorithms based on deep learning have emerged as a prominent research direction in the field of recommender systems. However, most existing studies focus primarily on single user-item interaction data, which limits the prediction performance of these models. This article proposes a method for encoding portrait constraints and integrates potential features from hidden factor models, increasing the input of recommendation algorithms to improve the accuracy of rating prediction. This algorithm utilizes matrix decomposition to initialize the embedding of latent features between users and items, and then enhances the sensitivity of the model to portrait features through linear attention mechanism. Finally, it combines deep neural networks for rating prediction. By comparing the algorithm proposed in this article with other baseline algorithms on the MovieLens and Netflix datasets, it was found that this algorithm significantly improved the accuracy of rating prediction compared to the baseline algorithm, and performed well in terms of recommendation list ranking performance. This study reveals that incorporating portrait constraints and latent features of users and items can effectively improve the performance of recommendation systems.
[1] | Raza, S. and Ding, C. (2021) News Recommender System: A Review of Recent Progress, Challenges, and Opportunities. Artificial Intelligence Review, 55, 749-800. https://doi.org/10.1007/s10462-021-10043-x |
[2] | Ko, H., Lee, S., Park, Y. and Choi, A. (2022) A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields. Electronics, 11, Article 141. https://doi.org/10.3390/electronics11010141 |
[3] | 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3): 531-563. |
[4] | Isinkaye, F.O. (2021) Matrix Factorization in Recommender Systems: Algorithms, Applications, and Peculiar Challenges. IETE Journal of Research, 69, 6087-6100. https://doi.org/10.1080/03772063.2021.1997357 |
[5] | Koren, Y. (2008) Factorization Meets the Neighborhood. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, 24-27 August 2008, 426-434. https://doi.org/10.1145/1401890.1401944 |
[6] | Koren, Y., Bell, R. and Volinsky, C. (2009) Matrix Factorization Techniques for Recommender Systems. Computer, 42, 30-37. https://doi.org/10.1109/mc.2009.263 |
[7] | 徐芳, 应洁茹. 国内外用户画像研究综述[J]. 图书馆学研究, 2020(12): 7-16. |
[8] | 周晨曦, 赵天驰, 张玲玲. 基于用户画像和链路预测的电影个性化推荐研究[J]. 系统科学与数学, 2024, 44(6): 1586-1607. |
[9] | Widiyaningtyas, T., Hidayah, I. and Adji, T.B. (2021) Recommendation Algorithm Using Clustering-Based UPCSim (CB-UPCSim). Computers, 10, Article 123. https://doi.org/10.3390/computers10100123 |
[10] | Ahmed, S.F., Alam, M.S.B., Hassan, M., Rozbu, M.R., Ishtiak, T., Rafa, N., et al. (2023) Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artificial Intelligence Review, 56, 13521-13617. https://doi.org/10.1007/s10462-023-10466-8 |
[11] | Tegene, A., Liu, Q., Gan, Y., Dai, T., Leka, H. and Ayenew, M. (2023) Deep Learning and Embedding Based Latent Factor Model for Collaborative Recommender Systems. Applied Sciences, 13, Article 726. https://doi.org/10.3390/app13020726 |
[12] | Lee, S. and Kim, D. (2022) Deep Learning Based Recommender System Using Cross Convolutional Filters. Information Sciences, 592, 112-122. https://doi.org/10.1016/j.ins.2022.01.033 |
[13] | Dien, T.T., Thanh-Hai, N. and Thai-Nghe, N. (2022) An Approach for Learning Resource Recommendation Using Deep Matrix Factorization. Journal of Information and Telecommunication, 6, 381-398. https://doi.org/10.1080/24751839.2022.2058250 |
[14] | Chin, W.S., Yuan, B.W., Yang, M.Y., et al. (2016) LIBMF: A Library for Parallel Matrix Factorization in Shared-Memory Systems. Journal of Machine Learning Research, 17, 1-5. |
[15] | Lu, S., Liu, M., Yin, L., Yin, Z., Liu, X. and Zheng, W. (2023) The Multi-Modal Fusion in Visual Question Answering: A Review of Attention Mechanisms. Peer J Computer Science, 9, e1400. https://doi.org/10.7717/peerj-cs.1400 |
[16] | Xue, F., He, X., Wang, X., Xu, J., Liu, K. and Hong, R. (2019) Deep Item-Based Collaborative Filtering for Top-N Recommendation. ACM Transactions on Information Systems, 37, 1-25. https://doi.org/10.1145/3314578 |
[17] | Cheng, Z., Liu, F., Mei, S., Guo, Y., Zhu, L. and Nie, L. (2022) Feature-Level Attentive ICF for Recommendation. ACM Transactions on Information Systems, 40, 1-24. https://doi.org/10.1145/3490477 |
[18] | Zhai, S., Talbott, W., Srivastava, N., et al. (2021) An Attention Free Transformer. |
[19] | He, X., Liao, L., Zhang, H., Nie, L., Hu, X. and Chua, T. (2017) Neural Collaborative Filtering. Proceedings of the 26th International Conference on World Wide Web, Perth, 3-7 April 2017, 173-182. https://doi.org/10.1145/3038912.3052569 |
[20] | Fu, Z., Niu, X. and Maher, M.L. (2023) Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives. ACM Computing Surveys, 56, 1-26. https://doi.org/10.1145/3605145 |
[21] | Yu, M., Quan, T., Peng, Q., Yu, X. and Liu, L. (2021) A Model-Based Collaborate Filtering Algorithm Based on Stacked Autoencoder. Neural Computing and Applications, 34, 2503-2511. https://doi.org/10.1007/s00521-021-05933-8 |
[22] | Noulapeu Ngaffo, A. and Choukair, Z. (2022) A Deep Neural Network-Based Collaborative Filtering Using a Matrix Factorization with a Twofold Regularization. Neural Computing and Applications, 34, 6991-7003. https://doi.org/10.1007/s00521-021-06831-9 |
[23] | Su, Z., Lin, Z., Ai, J. and Li, H. (2021) Rating Prediction in Recommender Systems Based on User Behavior Probability and Complex Network Modeling. IEEE Access, 9, 30739-30749. https://doi.org/10.1109/access.2021.3060016 |
[24] | Safarov, F., Kutlimuratov, A., Abdusalomov, A.B., Nasimov, R. and Cho, Y. (2023) Deep Learning Recommendations of E-Education Based on Clustering and Sequence. Electronics, 12, Article 809. https://doi.org/10.3390/electronics12040809 |
[25] | Deldjoo, Y., Nazary, F., Ramisa, A., McAuley, J., Pellegrini, G., Bellogin, A., et al. (2023) A Review of Modern Fashion Recommender Systems. ACM Computing Surveys, 56, 1-37. https://doi.org/10.1145/3624733 |
[26] | Zangerle, E. and Bauer, C. (2022) Evaluating Recommender Systems: Survey and Framework. ACM Computing Surveys, 55, 1-38. https://doi.org/10.1145/3556536 |
[27] | Moffat, A. and Zobel, J. (2008) Rank-Biased Precision for Measurement of Retrieval Effectiveness. ACM Transactions on Information Systems, 27, 1-27. https://doi.org/10.1145/1416950.1416952 |
[28] | Ai, J., Cai, Y., Su, Z., Zhang, K., Peng, D. and Chen, Q. (2022) Predicting User-Item Links in Recommender Systems Based on Similarity-Network Resource Allocation. Chaos, Solitons & Fractals, 158, Article 112032. https://doi.org/10.1016/j.chaos.2022.112032 |
[29] | Papadakis, H., Panagiotakis, C. and Fragopoulou, P. (2017) Scor: A Synthetic Coordinate Based Recommender System. Expert Systems with Applications, 79, 8-19. https://doi.org/10.1016/j.eswa.2017.02.025 |
[30] | Su, Z., Huang, Z., Ai, J., Zhang, X., Shang, L. and Zhao, F. (2022) Enhancing the Scalability of Distance-Based Link Prediction Algorithms in Recommender Systems through Similarity Selection. PLOS ONE, 17, e0271891. https://doi.org/10.1371/journal.pone.0271891 |