|
废停页岩气井改造同轴水平井闭式循环采热方法研究
|
Abstract:
本研究根据四川盆地焦石坝区志留系龙马溪组泥页岩储层及水平井的特征,构建了单井同轴水平井闭式循环采热模型。结合有限元模拟探究了不同系统的采热效果,分析了井身结构与注采参数的影响规律。研究表明,在水循环速率1500 m3/day,注入温度20℃及水平段长度1500 m条件下,单井同轴水平井采热运行初期井口水温达57.84℃,采热功率为2746.29 kW。在循环采热10年后,单井同轴水平井井口水温下降至33.51℃,采热功率下降到980.43 kW。水循环速率的增加会降低井口水温,但会提高采热速率;注入温度的增加可以提高井口水温,但会降低采热速率;水平段长度增加能够有效提高井口水温和采热速率。上述研究结果可为未来矿场应用提供一定的理论指导。
Based on the characteristics of the Silurian Longmaxi Formation shale reservoir and horizontal wells in the Jiaoshiba area of the Sichuan Basin, this study constructed a closed-loop heat extraction model for a single coaxial horizontal well. By employing finite element simulations, the heat extraction performance of different systems was investigated, and the influence patterns of wellbore structure and injection-production parameters were analyzed. The research demonstrates that under the conditions of a water circulation rate of 1500 m3/day, an injection temperature of 20?C, and a horizontal section length of 1500 m, the wellhead temperature of the single coaxial horizontal well reaches 57.84?C, with a heat extraction power of 2746.29 kW during the initial operation phase. After 10 years of circulation heat extraction, the wellhead temperature decreases to 33.51?C, and the heat extraction power drops to 980.43 kW. An increase in water circulation rate reduces the wellhead temperature but enhances the heat extraction rate, while an increase in injection temperature raises the wellhead temperature but lowers the heat extraction rate. Moreover, increasing the horizontal section length effectively improves both the wellhead temperature and the heat extraction rate. These findings provide theoretical guidance for future field applications.
[1] | Kabeyi, M.J.B. (2019) Geothermal Electricity Generation, Challenges, Opportunities and Recommendations. International Journal of Advances in Scientific Research and Engineering, 5, 53-95. |
[2] | Noorollahi, Y., Pourarshad, M., Jalilinasrabady, S. and Yousefi, H. (2015) Numerical Simulation of Power Production from Abandoned Oil Wells in Ahwaz Oil Field in Southern Iran. Geothermics, 55, 16-23. https://doi.org/10.1016/j.geothermics.2015.01.008 |
[3] | Hu, X., Banks, J., Wu, L. and Liu, W.V. (2020) Numerical Modeling of a Coaxial Borehole Heat Exchanger to Exploit Geothermal Energy from Abandoned Petroleum Wells in Hinton, Alberta. Renewable Energy, 148, 1110-1123. https://doi.org/10.1016/j.renene.2019.09.141 |
[4] | 宋先知, 张逸群, 李根生, 等. 雄安新区地热井同轴套管闭式循环取热技术研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(9): 971-981. |
[5] | Oh, K., Lee, S., Park, S., Han, S. and Choi, H. (2019) Field Experiment on Heat Exchange Performance of Various Coaxial-Type Ground Heat Exchangers Considering Construction Conditions. Renewable Energy, 144, 84-96. https://doi.org/10.1016/j.renene.2018.10.078 |
[6] | 郭海明, 鲍玲玲, 李俊岩, 等. 中深层同轴套管式换热器换热性能实验[J]. 中国煤炭地质, 2021, 33(6): 63-68. |
[7] | 刘倩. 多分支U型井闭式地热开采数值模拟研究[J]. 石油天然气学报, 2024, 46(4): 392. |
[8] | Barnard, A.C.L., Hunt, W.A., Timlake, W.P. and Varley, E. (1966) A Theory of Fluid Flow in Compliant Tubes. Biophysical Journal, 6, 717-724. https://doi.org/10.1016/s0006-3495(66)86690-0 |
[9] | Churchill, S.W. (1977) Friction-Factor Equation Spans All Fluid-Flow Regimes. Chemical Engineering (New York), 84, 9192. |
[10] | Bergman, T.L. (2011) Fundamentals of Heat and Mass Transfer. John Wiley & Sons. |
[11] | Lurie, M.V. (2008) Modeling of Oil Product and Gas Pipeline Transportation. Wiley. https://doi.org/10.1002/9783527626199 |
[12] | Coulson, J.M., Richardson, J.F., Backhurst, J.R., et al. (1999) Chemical Engineering: Fluid Flow, Heat Transfer and Mass Transfer. Butterworth-Heinemann. |
[13] | Liang, Y., Teng, B. and Luo, W. (2024) A New Semi-Analytical Model for Studying the Performance of Deep U-Shaped Borehole Heat Exchangers. Renewable Energy, 225, Article ID: 120275. https://doi.org/10.1016/j.renene.2024.120275 |
[14] | 李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627. |
[15] | 李明飞, 徐绯, 窦益华. 再生老井二次射孔和三次射孔套管强度安全性评价[J]. 石油钻采工艺, 2018, 40(4): 453-459. |
[16] | 张栋, 黄正均, 梁明纯, 等. 荷载条件下泥页岩热物性参数试验研究[J]. 中国测试, 2023, 49(2): 27-33. |
[17] | 黄如玉, 孙靖杰, 李先. 西宁盆地新近系膨胀泥岩膨胀特性研究[J]. 四川建筑, 2019, 39(2): 191-193. |
[18] | 朱世保, 唐波, 刘刚, 等. 重庆地区常见岩层的储热性能研究[J]. 西部探矿工程, 2018, 30(7): 130-134. |
[19] | 周霞, 梁波. 四川盆地元坝地区下侏罗统介壳灰岩特征与识别[J]. 西安石油大学学报: 自然科学版, 2017, 32(6): 35-43. |
[20] | 杨友照. 基于第一性原理计算的碳酸盐岩及矿物热物理性质研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2020. |
[21] | 高树生, 胡志明, 安为国, 等. 四川盆地龙王庙组气藏白云岩储层孔洞缝分布特征[J]. 天然气工业, 2014, 34(3): 103-109. |
[22] | 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系——志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4): 648-659. |