全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地下水对离子吸附型稀土矿的成矿制约
A Discussion on the Application Prospects of Fe Isotopes in Ion-Adsorption Rare Earth Deposits

DOI: 10.12677/ag.2025.154045, PP. 443-453

Keywords: 地下水,离子吸附型稀土矿,成矿制约,富集分异
Groundwater
, Ion-Adsorption Rare Earth Elements, Mineralization Constraints, Enrichment and Fractionation

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究探讨了地下水对离子吸附型稀土矿(REE)成矿过程的制约机制。地下水的化学性质,如pH值、氧化还原电位(Eh)、离子强度以及所含离子类型,对稀土元素的富集和分异起着关键作用。研究表明,地下水的这些特性直接影响稀土元素的浓度及其在风化壳中的存在形式,进而决定了稀土元素的迁移和富集路径。然而,目前对于地下水淋滤作用下风化壳内稀土元素的解吸、迁移、分异以及再吸附过程仍缺乏清晰的认识。未来研究应重点关注地下水在渗流过程中与风化壳两相之间稀土元素的转移形式和转移量,以期进一步揭示地下水对离子吸附型稀土矿成矿的制约机制,为稀土资源的勘探和开发提供理论支持。
This study deeply investigates the mechanisms by which groundwater constrains the formation of ion-adsorption rare earth element (REE) deposits. The chemical properties of groundwater, such as pH, redox potential (Eh), ionic strength, and the types of ions present, play a crucial role in the enrichment and fractionation of REEs. The research shows that these characteristics of groundwater directly affect the concentration of REEs and their forms of existence in the weathering crust, thereby determining the migration and enrichment pathways of REEs. However, the processes of desorption, migration, fractionation, and re-adsorption of REEs in the weathering crust under the leaching action of groundwater are still not clearly understood. Future research should focus on the forms and amounts of REEs transferred between groundwater and the weathering crust during groundwater infiltration. This will help further reveal the mechanisms by which groundwater constrains the formation of ion-adsorption REE deposits and provide theoretical support for the exploration and development of REE resources.

References

[1]  Goodenough, K.M., Wall, F. and Merriman, D. (2017) The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Natural Resources Research, 27, 201-216.
https://doi.org/10.1007/s11053-017-9336-5
[2]  Escudero, A., Becerro, A.I., Carrillo-Carrión, C., Núñez, N.O., Zyuzin, M.V., Laguna, M., et al. (2017) Rare Earth Based Nanostructured Materials: Synthesis, Functionalization, Properties and Bioimaging and Biosensing Applications. Nanophotonics, 6, 881-921.
https://doi.org/10.1515/nanoph-2017-0007
[3]  Luo, M., Shaitan, K., Qu, X., Bonartsev, A.P. and Lei, B. (2022) Bioactive Rare Earth-Based Inorganic-Organic Hybrid Biomaterials for Wound Healing and Repair. Applied Materials Today, 26, Article 101304.
https://doi.org/10.1016/j.apmt.2021.101304
[4]  Reston, V.A. (2022) Mineral Commodity Summaries 2022.
[5]  Xie, Y., Hou, Z., Goldfarb, R.J., Guo, X. and Wang, L. (2016) Rare Earth Element Deposits in China. In: Rare Earth and Critical Elements in Ore Deposits, Society of Economic Geologists, 115-136.
https://doi.org/10.5382/rev.18.06
[6]  洪广言. 稀土化学导论[M]. 北京: 科学出版社, 2014.
[7]  刘容. 江西安远岗下矿区花岗岩风化壳型稀土矿床的矿物学研究[D]: [硕士学位论文]. 南京: 南京大学, 2016.
[8]  王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5): 796-802.
[9]  周美夫, 李欣禧, 王振朝, 等. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报, 2020, 65(33): 3809-3824.
[10]  张祖海. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛, 1990(1): 57-71.
[11]  赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6): 1454-1465.
[12]  何宏平, 王珩, 李旭锐, 等. 风化壳型稀土矿床中稀土元素的活化与迁移[J]. 地质力学学报, 2024, 30(5): 707-722.
[13]  Amiel, N., Dror, I. and Berkowitz, B. (2022) Mobility and Retention of Rare Earth Elements in Porous Media. ACS Omega, 7, 19491-19501.
https://doi.org/10.1021/acsomega.2c01180
[14]  Bao, Z. and Zhao, Z. (2008) Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China. Ore Geology Reviews, 33, 519-535.
https://doi.org/10.1016/j.oregeorev.2007.03.005
[15]  Li, Y.H.M., Zhao, W.W. and Zhou, M. (2017) Nature of Parent Rocks, Mineralization Styles and Ore Genesis of Regolith-Hosted REE Deposits in South China: An Integrated Genetic Model. Journal of Asian Earth Sciences, 148, 65-95.
https://doi.org/10.1016/j.jseaes.2017.08.004
[16]  Li, M.Y.H., Zhou, M. and Williams-Jones, A.E. (2020) Controls on the Dynamics of Rare Earth Elements during Subtropical Hillslope Processes and Formation of Regolith-Hosted Deposits. Economic Geology, 115, 1097-1118.
https://doi.org/10.5382/econgeo.4727
[17]  赵芝, 王登红, 邹新勇. “寨背式”离子吸附型稀土矿床多类型稀土矿化及其成因[J]. 岩石学报, 2022, 38(2): 356-370.
[18]  Li, M.Y.H., Kwong, H.T., Williams-Jones, A.E. and Zhou, M. (2022) The Thermodynamics of Rare Earth Element Liberation, Mobilization and Supergene Enrichment during Groundwater-Regolith Interaction. Geochimica et Cosmochimica Acta, 330, 258-277.
https://doi.org/10.1016/j.gca.2021.05.002
[19]  张黎, 杨绍文, 倪光清, 等. 滇西南岔河稀土矿风化壳的pH值与矿体特征[J]. 稀土, 2021, 42(6): 80-87.
[20]  孙慧敏, 殷宪强, 王益权. pH对粘土矿物胶体在饱和多孔介质中运移的影响[J]. 环境科学学报, 2012, 32(2): 419-424.
[21]  Munemoto, T., Ohmori, K. and Iwatsuki, T. (2015) Rare Earth Elements (REE) in Deep Groundwater from Granite and Fracture-Filling Calcite in the Tono Area, Central Japan: Prediction of REE Fractionation in Paleo to Present-Day Groundwater. Chemical Geology, 417, 58-67.
https://doi.org/10.1016/j.chemgeo.2015.09.024
[22]  Sanematsu, K., Kon, Y. and Imai, A. (2015) Influence of Phosphate on Mobility and Adsorption of Rees during Weathering of Granites in Thailand. Journal of Asian Earth Sciences, 111, 14-30.
https://doi.org/10.1016/j.jseaes.2015.05.018
[23]  Wang, M., Hei Li, M.Y., Zhou, M., Zhou, J., Sun, G., Zhou, Y., et al. (2024) Enrichment of Rare Earth Elements during the Weathering of Alkaline Igneous Systems: Insights from the Puxiong Regolith-Hosted Rare Earth Element Deposit, SW China. Economic Geology, 119, 161-187.
https://doi.org/10.5382/econgeo.5024
[24]  刘昆, 何捷, 焦树林, 等. 粤东花岗岩流域覆盖型风化壳风化特征比较[J]. 生态环境学报, 2008, 17(5): 1937-1941.
[25]  陆一敢, 方科, 卢见昆, 等. 广西龙江矿区离子吸附型稀土矿成矿规律对比[J]. 桂林理工大学学报, 2015, 35(4): 660-666.
[26]  黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2021.
[27]  高瑜鸿, 范晨子, 许虹, 等. 高岭石和埃洛石-7Å对稀土元素吸附特征的实验研究[J]. 岩石矿物学杂志, 2018, 37(1): 161-168.
[28]  Yang, M., Liang, X., Ma, L., Huang, J., He, H. and Zhu, J. (2019) Adsorption of Rees on Kaolinite and Halloysite: A Link to the REE Distribution on Clays in the Weathering Crust of Granite. Chemical Geology, 525, 210-217.
https://doi.org/10.1016/j.chemgeo.2019.07.024
[29]  Madadi, R., Saeedi, M. and Karbassi, A. (2022) Redox-Induced Mobilization of Rare Earth Elements in Sediments of the Northwestern Part of the Persian Gulf. International Journal of Environmental Science and Technology, 19, 11037-11050.
https://doi.org/10.1007/s13762-022-04322-5
[30]  Ichimura, K., Sanematsu, K., Kon, Y., Takagi, T. and Murakami, T. (2020) REE Redistributions during Granite Weathering: Implications for Ce Anomaly as a Proxy for Paleoredox States. American Mineralogist, 105, 848-859.
https://doi.org/10.2138/am-2020-7148
[31]  Janots, E., Bernier, F., Brunet, F., Muñoz, M., Trcera, N., Berger, A., et al. (2015) Ce(III) and Ce(IV) (Re)distribution and Fractionation in a Laterite Profile from Madagascar: Insights from in Situ XANES Spectroscopy at the Ce LIII-Edge. Geochimica et Cosmochimica Acta, 153, 134-148.
https://doi.org/10.1016/j.gca.2015.01.009
[32]  王玉洁, 刘蓓蓓, 万全, 等. 稀土元素在土壤中的释放与迁移研究进展[J]. 生态环境学报, 2021, 30(3): 644-654.
[33]  于扬, 李德先, 王登红, 等. 溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J]. 地学前缘, 2017, 24(5): 172-181.
[34]  Zhao, X., Li, N., Huizenga, J.M., Yan, S., Yang, Y. and Niu, H. (2021) Rare Earth Element Enrichment in the Ion-Adsorption Deposits Associated Granites at Mesozoic Extensional Tectonic Setting in South China. Ore Geology Reviews, 137, Article 104317.
https://doi.org/10.1016/j.oregeorev.2021.104317
[35]  Tang, J. and Johannesson, K.H. (2010) Rare Earth Elements Adsorption onto Carrizo Sand: Influence of Strong Solution Complexation. Chemical Geology, 279, 120-133.
https://doi.org/10.1016/j.chemgeo.2010.10.011
[36]  郭华明, 张波, 李媛, 等. 内蒙古河套平原高砷地下水中稀土元素含量及分异特征[J]. 地学前缘, 2010, 17(6): 59-66.
[37]  虎贵朋, 韦刚健, 马金龙, 等. 粤北碳酸盐岩化学风化过程中的元素地球化学行为[J]. 地球化学, 2017, 46(1): 33-45.
[38]  Migdisov, A., Guo, X., Nisbet, H., Xu, H. and Williams-Jones, A.E. (2019) Fractionation of REE, U, and Th in Natural Ore-Forming Hydrothermal Systems: Thermodynamic Modeling. The Journal of Chemical Thermodynamics, 128, 305-319.
https://doi.org/10.1016/j.jct.2018.08.032
[39]  Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K., Gopinath, S., Prakash, R., Ponnumani, G., et al. (2020) Rare Earth Elements Geochemistry of Groundwater from Shanmuganadhi, Tamilnadu, India: Chemical Weathering Implications Using Geochemical Mass-Balance Calculations. Geochemistry, 80, Article 125668.
https://doi.org/10.1016/j.chemer.2020.125668
[40]  Huang, J., He, H., Tan, W., Liang, X., Ma, L., Wang, Y., et al. (2021) Groundwater Controls REE Mineralisation in the Regolith of South China. Chemical Geology, 577, Article 120295.
https://doi.org/10.1016/j.chemgeo.2021.120295
[41]  杨恬, 朱照宇, 吴翼, 等. 中国东部地带表土稀土元素的地球化学特征[J]. 地学前缘, 2010, 17(3): 233-241.
[42]  邱森. 轻重稀土在粘土矿物表面的吸附/解吸差异性机制研究[D]: [博士学位论文]. 赣州: 江西理工大学, 2023.
[43]  Bishop, B.A., Alam, M.S., Flynn, S.L., Chen, N., Hao, W., Ramachandran Shivakumar, K., et al. (2024) Rare Earth Element Adsorption to Clay Minerals: Mechanistic Insights and Implications for Recovery from Secondary Sources. Environmental Science & Technology, 58, 7217-7227.
https://doi.org/10.1021/acs.est.4c00974
[44]  徐洁, 黄伟光, 王高锋, 等. 风化壳中不同种类黏土矿物对离子态稀土元素富集的贡献——以帽峰山风化剖面为例[J]. 大地构造与成矿学, 2024, 48(2): 270-282.
[45]  Deluca, F., Mongelli, G., Paternoster, M. and Zhu, Y. (2020) Rare Earth Elements Distribution and Geochemical Behaviour in the Volcanic Groundwaters of Mount Vulture, Southern Italy. Chemical Geology, 539, Article 119503.
https://doi.org/10.1016/j.chemgeo.2020.119503
[46]  Borst, A.M., Smith, M.P., Finch, A.A., Estrade, G., Villanova-de-Benavent, C., Nason, P., et al. (2020) Adsorption of Rare Earth Elements in Regolith-Hosted Clay Deposits. Nature Communications, 11, Article No. 4386.
https://doi.org/10.1038/s41467-020-17801-5
[47]  Kang, S., Ling, B., Wang, G., Xu, Y., Xu, J., Liang, X., et al. (2024) Transport Dynamics of Rare Earth Elements in Weathering Crust Soils. Science of the Total Environment, 930, Article 172843.
https://doi.org/10.1016/j.scitotenv.2024.172843
[48]  Xiao, Y., Huang, L., Long, Z., Feng, Z. and Wang, L. (2016) Adsorption Ability of Rare Earth Elements on Clay Minerals and Its Practical Performance. Journal of Rare Earths, 34, 543-548.
https://doi.org/10.1016/s1002-0721(16)60060-1
[49]  张宇峰, 戴乐美, 武正华, 等. 酸雨对稀土在土壤中吸附和解吸的影响[J]. 农业环境科学学报, 2002, 21(2): 107-109.
[50]  覃丰, 谭杰, 周业泉, 等. 广西崇左地区火山岩风化壳离子吸附型稀土矿床地质特征及成因[J]. 矿产与地质, 2019, 33(2): 234-241.
[51]  陆蕾, 王登红, 王成辉, 等. 云南离子吸附型稀土矿成矿规律[J]. 地质学报, 2020, 94(1): 179-191.
[52]  Tang, J. and Johannesson, K.H. (2010) Rare Earth Elements Adsorption Onto Carrizo Sand: Influence of Strong Solution Complexation. Chemical Geology, 279, 120-133.
https://doi.org/10.1016/j.chemgeo.2010.10.011
[53]  王建文, 黄美俊, 张彦伟. 浅析花岗岩风化壳离子吸附型稀土矿床成矿特征[J]. 西部探矿工程, 2019, 31(11): 122-124+127.
[54]  Wu, Z., Chen, Y., Wang, Y., Xu, Y., Lin, Z., Liang, X., et al. (2023) Review of Rare Earth Element (REE) Adsorption on and Desorption from Clay Minerals: Application to Formation and Mining of Ion-Adsorption REE Deposits. Ore Geology Reviews, 157, Article 105446.
https://doi.org/10.1016/j.oregeorev.2023.105446

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133