|
HECTD3在上皮性卵巢癌中的表达及对铂耐药的影响
|
Abstract:
目的:探讨HECTD3基因在卵巢癌组织中的表达,对上皮性卵巢癌铂耐药现象的影响及预后价值。方法:采用免疫组化法检测我院上皮性卵巢癌组织中HECTD3蛋白的表达情况,比较HECTD3蛋白表达与患者临床病理特征之间的相关性,利用HPA、GEPIA2和Kaplan-Meier Plotter数据库分别分析HECTD3蛋白在卵巢癌组织中的表达和预后价值;GSEA和CIBERSORT算法分别分析HECTD3高低表达组主要富集通路和HECTD3表达卵巢癌中主要免疫细胞的免疫浸润关系。结果:HECTD3蛋白在上皮性卵巢癌组织中高表达,且其高表达与卵巢癌的复发,尤其是铂耐药复发相关。Kaplan-Meier Plotter预后分析提示HECTD3基因高表达的患者预后更差(P < 0.05)。富集分析结果显示,HECTD3高低组差异基因主要富集在雌激素信号转导途径、IL6/JAK/STAT3信号通路等。CIBERSORT算法分析发现HECTD3基因与肿瘤微环境中中性粒细胞、CD4+记忆静息T细胞的浸润程度呈正相关(P < 0.05)。结论:在卵巢癌组织中,HECTD3蛋白的表达显著上调,它或许通过调控IL-6/JAK/STAT3信号通路以及影响肿瘤微环境中免疫细胞的浸润,进而加剧卵巢癌患者的铂类药物耐药复发,最终对患者的预后产生不利影响。
Objective: To investigate the expression of HECTD3 gene in ovarian cancer, its impact on the development of platinum resistance, and its prognostic significance. Methods: Immunohistochemistry was employed to examine the expression of HECTD3 protein in epithelial ovarian cancer tissues obtained from our hospital. The association between HECTD3 protein expression and patients’ clinical pathological features was evaluated. Additionally, we utilized the HPA, GEPIA2, and Kaplan-Meier Plotter databases to analyze the expression levels and prognostic significance of HECTD3 protein in ovarian cancer tissues. Furthermore, GSEA analysis was conducted to identify the key pathways enriched in HECTD3 high and low expression groups, while the CIBERSORT algorithm was applied to investigate the relationship between HECTD3 expression and immune cell infiltration in ovarian cancer. Results: HECTD3 was highly expressed in epithelial ovarian cancer, with elevated expression associated with recurrence, particularly platinum-resistant recurrence. Kaplan-Meier analysis indicated that patients with high HECTD3 expression had poorer prognosis (P < 0.05). Enrichment analysis revealed that differentially expressed genes in HECTD3 were primarily involved in estrogen signaling and IL6/JAK/STAT3 pathways. CIBERSORT analysis demonstrated a positive correlation between HECTD3 expression and the infiltration of neutrophils and CD4+ memory resting T cells in the tumor microenvironment (P < 0.05). Conclusion: HECTD3 protein is significantly upregulated in ovarian cancer tissue, potentially exacerbating platinum resistance through modulation of the IL-6/JAK/STAT3 signaling pathway and influencing immune cell infiltration in the tumor microenvironment, ultimately adversely affecting patient prognosis.
[1] | Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820 |
[2] | Joly, F., Fabbro, M., Berton, D., Lequesne, J., Anota, A., Puszkiel, A., et al. (2022) Paclitaxel with or without Pazopanib for Ovarian Cancer Relapsing during Bevacizumab Maintenance Therapy: The GINECO Randomized Phase II TAPAZ Study. Gynecologic Oncology, 166, 389-396. https://doi.org/10.1016/j.ygyno.2022.06.022 |
[3] | Yang, L., Xie, H., Li, Y., Wang, X., Liu, X. and Mai, J. (2022) Molecular Mechanisms of Platinum-Based Chemotherapy Resistance in Ovarian Cancer (Review). Oncology Reports, 47, Article No. 82. https://doi.org/10.3892/or.2022.8293 |
[4] | Cruz Walma, D.A., Chen, Z., Bullock, A.N. and Yamada, K.M. (2022) Ubiquitin Ligases: Guardians of Mammalian Development. Nature Reviews Molecular Cell Biology, 23, 350-367. https://doi.org/10.1038/s41580-021-00448-5 |
[5] | Sheng, X., Xia, Z., Yang, H. and Hu, R. (2023) The Ubiquitin Codes in Cellular Stress Responses. Protein & Cell, 15, 157-190. https://doi.org/10.1093/procel/pwad045 |
[6] | Sampson, C., Wang, Q., Otkur, W., Zhao, H., Lu, Y., Liu, X., et al. (2023) The Roles of E3 Ubiquitin Ligases in Cancer Progression and Targeted Therapy. Clinical and Translational Medicine, 13, e1204. https://doi.org/10.1002/ctm2.1204 |
[7] | Li, Z., Zhou, L., Prodromou, C., Savic, V. and Pearl, L.H. (2017) HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients. Cell Reports, 19, 2515-2528. https://doi.org/10.1016/j.celrep.2017.05.078 |
[8] | Dewson, G., Eichhorn, P.J.A. and Komander, D. (2023) Deubiquitinases in Cancer. Nature Reviews Cancer, 23, 842-862. https://doi.org/10.1038/s41568-023-00633-y |
[9] | Zheng, N. and Shabek, N. (2017) Ubiquitin Ligases: Structure, Function, and Regulation. Annual Review of Biochemistry, 86, 129-157. https://doi.org/10.1146/annurev-biochem-060815-014922 |
[10] | Li, F., Liang, H., You, H., Xiao, J., Xia, H., Chen, X., et al. (2022) Targeting HECTD3-IKKα Axis Inhibits Inflammation-Related Metastasis. Signal Transduction and Targeted Therapy, 7, Article No. 264. https://doi.org/10.1038/s41392-022-01057-0 |
[11] | Li, Y., Kong, Y., Zhou, Z., Chen, H., Wang, Z., Hsieh, Y., et al. (2013) The HECTD3 E3 Ubiquitin Ligase Facilitates Cancer Cell Survival by Promoting K63-Linked Polyubiquitination of Caspase-8. Cell Death & Disease, 4, e935-e935. https://doi.org/10.1038/cddis.2013.464 |
[12] | Li, Y., Wu, X., Li, L., Liu, Y., Xu, C., Su, D., et al. (2017) The E3 Ligase HECTD3 Promotes Esophageal Squamous Cell Carcinoma (ESCC) Growth and Cell Survival through Targeting and Inhibiting Caspase-9 Activation. Cancer Letters, 404, 44-52. https://doi.org/10.1016/j.canlet.2017.07.004 |
[13] | Győrffy, B. (2024) Integrated Analysis of Public Datasets for the Discovery and Validation of Survival-Associated Genes in Solid Tumors. The Innovation, 5, Article ID: 100625. https://doi.org/10.1016/j.xinn.2024.100625 |
[14] | Győrffy, B. (2023) Transcriptome‐Level Discovery of Survival‐Associated Biomarkers and Therapy Targets in Non‐Small‐Cell Lung Cancer. British Journal of Pharmacology, 181, 362-374. https://doi.org/10.1111/bph.16257 |
[15] | 陈瑞娇, 史利霞, 王艺璇, 等. GPR27基因在卵巢癌组织中的表达及其与肿瘤免疫浸润及患者预后的相关性[J]. 山西医科大学学报, 2023, 54(4): 432-439. |
[16] | Webb, P.M. and Jordan, S.J. (2024) Global Epidemiology of Epithelial Ovarian Cancer. Nature Reviews Clinical Oncology, 21, 389-400. https://doi.org/10.1038/s41571-024-00881-3 |
[17] | 邢一春, 王东雁, 赖玉婷, 等. 《ESGO、ESHRE、ESGE子宫颈癌、卵巢癌和卵巢交界性肿瘤患者保留生育功能治疗和随访指南》解读[J]. 中国实用妇科与产科杂志, 2024,4 0(10): 1026-1031. |
[18] | Langdon, S.P., Herrington, C.S., Hollis, R.L. and Gourley, C. (2020) Estrogen Signaling and Its Potential as a Target for Therapy in Ovarian Cancer. Cancers, 12, Article 1647. https://doi.org/10.3390/cancers12061647 |
[19] | Collaborative Group on Epidemiological Studies of Ovarian Cancer (2015) Menopausal Hormone Use and Ovarian Cancer Risk: Individual Participant Meta-Analysis of 52 Epidemiological Studies. The Lancet, 385, 1835-1842. https://doi.org/10.1016/s0140-6736(14)61687-1 |
[20] | Matsumura, S., Ohta, T., Yamanouchi, K., Liu, Z., Sudo, T., Kojimahara, T., et al. (2016) Activation of Estrogen Receptor Α by Estradiol and Cisplatin Induces Platinum-Resistance in Ovarian Cancer Cells. Cancer Biology & Therapy, 18, 730-739. https://doi.org/10.1080/15384047.2016.1235656 |
[21] | Berkel, C. and Cacan, E. (2021) Estrogen-and Estrogen Receptor (ER)-Mediated Cisplatin Chemoresistance in Cancer. Life Sciences, 286, Article ID: 120029. https://doi.org/10.1016/j.lfs.2021.120029 |
[22] | 袁亮明, 方芳. 外周血IL-6、STAT3、IFN-γ在卵巢癌患者中的表达及其临床价值[J]. 中国当代医药, 2024, 31(21): 132-136. |
[23] | Cohen, S., Bruchim, I., Graiver, D., Evron, Z., Oron-Karni, V., Pasmanik-Chor, M., et al. (2012) Platinum-Resistance in Ovarian Cancer Cells Is Mediated by IL-6 Secretion via the Increased Expression of Its Target Ciap-2. Journal of Molecular Medicine, 91, 357-368. https://doi.org/10.1007/s00109-012-0946-4 |
[24] | Scambia, G., Testa, U., Benedetti Panici, P., Foti, E., Martucci, R., Gadducci, A., et al. (1995) Prognostic Significance of Interleukin 6 Serum Levels in Patients with Ovarian Cancer. British Journal of Cancer, 71, 354-356. https://doi.org/10.1038/bjc.1995.71 |
[25] | Tempfer, C., Zeisler, H., Sliutz, G., Haeusler, G., Hanzal, E. and Kainz, C. (1997) Serum Evaluation of Interleukin 6 in Ovarian Cancer Patients. Gynecologic Oncology, 66, 27-30. https://doi.org/10.1006/gyno.1997.4726 |
[26] | Wen, W., Liang, W., Wu, J., Kowolik, C.M., Buettner, R., Scuto, A., et al. (2014) Targeting JAK1/STAT3 Signaling Suppresses Tumor Progression and Metastasis in a Peritoneal Model of Human Ovarian Cancer. Molecular Cancer Therapeutics, 13, 3037-3048. https://doi.org/10.1158/1535-7163.mct-14-0077 |
[27] | Cho, J.J., Xu, Z., Parthasarathy, U., Drashansky, T.T., Helm, E.Y., Zuniga, A.N., et al. (2019) HECTD3 Promotes Pathogenic Th17 Lineage through Stat3 Activation and Malt1 Signaling in Neuroinflammation. Nature Communications, 10, Article No. 701. https://doi.org/10.1038/s41467-019-08605-3 |
[28] | Duan, Z., Foster, R., Bell, D.A., Mahoney, J., Wolak, K., Vaidya, A., et al. (2006) Signal Transducers and Activators of Transcription 3 Pathway Activation in Drug-Resistant Ovarian Cancer. Clinical Cancer Research, 12, 5055-5063. https://doi.org/10.1158/1078-0432.ccr-06-0861 |
[29] | Huang, M., Page, C., Reynolds, R.K. and Lin, J. (2000) Constitutive Activation of Stat 3 Oncogene Product in Human Ovarian Carcinoma Cells. Gynecologic Oncology, 79, 67-73. https://doi.org/10.1006/gyno.2000.5931 |
[30] | Wu, Y., Xu, M., Feng, Z., Wu, H., Wu, J., Ha, X., et al. (2023) AUF1-induced Circular RNA Hsa_circ_0010467 Promotes Platinum Resistance of Ovarian Cancer through miR-637/LIF/STAT3 Axis. Cellular and Molecular Life Sciences, 80, Article No. 256. https://doi.org/10.1007/s00018-023-04906-5 |
[31] | Norquist, B., Wurz, K.A., Pennil, C.C., Garcia, R., Gross, J., Sakai, W., et al. (2011) Secondary Somatic Mutations Restoring BRCA1/2 Predict Chemotherapy Resistance in Hereditary Ovarian Carcinomas. Journal of Clinical Oncology, 29, 3008-3015. https://doi.org/10.1200/jco.2010.34.2980 |
[32] | Lai, H., Guo, Y., Wu, L., Yusufu, A., Zhong, Q., Liao, Z., et al. (2023) Necroptosis‐Related Regulatory Pattern and Scoring System for Predicting Therapeutic Efficacy and Prognosis in Ovarian Cancer. Cancer Reports, 6, e1893. https://doi.org/10.1002/cnr2.1893 |
[33] | Worzfeld, T., Pogge von Strandmann, E., Huber, M., Adhikary, T., Wagner, U., Reinartz, S., et al. (2017) The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Frontiers in Oncology, 7, Article 24. https://doi.org/10.3389/fonc.2017.00024 |
[34] | Havasi, A., Cainap, S.S., Havasi, A.T. and Cainap, C. (2023) Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina, 59, Article 544. https://doi.org/10.3390/medicina59030544 |
[35] | 潘美竹, 张颐, 张师前. 肿瘤相关巨噬细胞在卵巢癌中的研究进展[J]. 癌症进展, 2024, 22(20): 2205-2210. |
[36] | 曹铁凤, 黄佳明, 何雨诗, 等. 卵巢癌免疫细胞浸润模式及其临床意义[J]. 医学研究杂志, 2024, 53(6): 29-34. |
[37] | Granot, Z. and Jablonska, J. (2015) Distinct Functions of Neutrophil in Cancer and Its Regulation. Mediators of Inflammation, 2015, Article ID: 701067. https://doi.org/10.1155/2015/701067 |
[38] | Hedrick, C.C. and Malanchi, I. (2021) Neutrophils in Cancer: Heterogeneous and Multifaceted. Nature Reviews Immunology, 22, 173-187. https://doi.org/10.1038/s41577-021-00571-6 |
[39] | Chen, S., Zhang, L., Yan, G., Cheng, S., Fathy, A.H., Yan, N., et al. (2017) Neutrophil-to-Lymphocyte Ratio Is a Potential Prognostic Biomarker in Patients with Ovarian Cancer: A Meta-Analysis. BioMed Research International, 2017, Article ID: 7943467. https://doi.org/10.1155/2017/7943467 |