全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二极管泵浦腔内KTP倍频Nd:YAG/YVO4拉曼激光器
Diode-Pumred Acousto-Optic Q-Switched Intracavity KTP Frequency-Double Nd:YAG/YVO4 Raman Laser

DOI: 10.12677/app.2025.154024, PP. 215-221

Keywords: 拉曼激光器,黄光,非线性频率转换
Raman Laser
, Yellow Light, Nonlinear Frequency Conversion

Full-Text   Cite this paper   Add to My Lib

Abstract:

使用掺钕材料作为激光增益介质,再辅以腔内倍频技术,可以高效、稳定的获取多个波段的可见光输出,是全固态激光器的重要发展方向。本文使用Nd:YAG作为激光增益介质,使用YVO4作为拉曼介质,再辅以KTP作为倍频介质,搭建了能够稳定输出588 nm黄光激光输出的腔内倍频声光调Q拉曼激光器。当脉冲重复率为10 kHz,泵浦功率为7.36 W时,得到了最高的输出功率为389 mW,此时从LD到黄光的光–光转换效率为5.3%。
Using neodymium-doped materials as laser gain media, combined with intracavity frequency-doubling technology, enables efficient and stable visible light output across multiple wavelength bands, making it a key development direction for all-solid-state lasers. In this study, an intracavity frequency-doubled acousto-optic Q-switched Raman laser was constructed using Nd:YAG as the laser gain medium, YVO? as the Raman medium, and KTP as the frequency-doubling medium, achieving stable yellow laser output at 588 nm. At a pulse repetition frequency of 10 kHz and a pump power of 7.36 W, the highest output power of 389 mW was obtained, with an optical-to-optical conversion efficiency of 5.3% from the LD to the yellow light.

References

[1]  Jiang, P., Ding, X., Guo, J., Zhang, H., Qi, H., Shang, Y., et al. (2024) Research Progress of Crystalline Raman Yellow Lasers. Optics & Laser Technology, 169, Article ID: 110072.
https://doi.org/10.1016/j.optlastec.2023.110072

[2]  Zhao, H., Dai, S., Zhu, S., Yin, H., Li, Z. and Chen, Z. (2021) Multifunctional Optical Crystals for All-Solid-State Raman Lasers. Crystals, 11, Article No. 114.
https://doi.org/10.3390/cryst11020114

[3]  Piper, J.A. and Pask, H.M. (2007) Crystalline Raman Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 692-704.
https://doi.org/10.1109/jstqe.2007.897175

[4]  Zuo, Z., Dai, S., Yin, H., Zhu, S., Li, Z., Chen, Z., et al. (2019) Multi-Watt Simultaneous Orthogonally Polarized Dual-Wavelength Pulse Generation of an Intracavity Nd:YLF/YVO4 Raman Laser. IEEE Photonics Journal, 11, 1-8.
https://doi.org/10.1109/jphot.2019.2896224

[5]  Sun, B., Ding, X., Jiang, P., Bai, Y., Yu, X., Liu, Y., et al. (2020) 13.7-W 588-nm Yellow Laser Generation by Frequency Doubling of 885-nm Side-Pumped Nd:YAG-YVO4 Intracavity Raman Laser. IEEE Photonics Journal, 12, 1-7.
https://doi.org/10.1109/jphot.2020.2978024

[6]  Zhang, P., Qiu, H., Qiao, H. and Shi, Y. (2022) A Narrow-Linewidth Passively Q-Switched Intracavity YVO4 Raman Laser at 589.16 nm. Journal of Russian Laser Research, 43, 249-253.
https://doi.org/10.1007/s10946-022-10046-1

[7]  Zhao, H., Dai, S., Ouyang, K., Zhu, S., Yin, H., Li, Z., et al. (2024) High-Power and Narrow-Linewidth Nanosecond Pulsed Intracavity Crystalline Raman Laser Operating at 1.7 μm. Optics Express, 32, 20852-20861.
https://doi.org/10.1364/oe.527203

[8]  Zhong, J. and Zhang, T. (2024) Continuous‐Wave and Cavity‐Dumped 1064 nm Nd:YVO4 Laser Based on the Magneto‐optical Effect. IET Optoelectronics, 19, e12133.
https://doi.org/10.1049/ote2.12133

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133