全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

R3上两类齐次多项式的Hessian度量
The Hessian Metric of Two Classes of Homogeneous Polynomials on R3

DOI: 10.12677/pm.2025.154119, PP. 162-170

Keywords: Hessian度量,截面曲率,齐次函数,Clebsch Covariant,WDVV方程
Hessian Metric
, Sectional Curvature, Homogeneous Function, Clebsch Covariant, WDVV Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要对Hessian度量诱导的截面曲率展开分析。首先阐述Hessian度量和与之相关的Christoffor符号和曲率张量公式。接着介绍当定义域U为锥时,齐次函数的相关概念,以及Clebsch covariant S(f)和截面曲率的联系。利用R3中开子集U和超平面M = {f = 1}相切2-平面上一点处的截面曲率可由S(f)和 Hessian 行列式H(f)表示,其中f为R3上的齐次多项式,得到不变量S(f)为零与Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)方程等价的条件,即f可以表示为两种特殊的形式。
This paper primarily analyzes the sectional curvature induced by the Hessian metric. It begins by detailing the Hessian metric and its associated Christoffel symbols and curvature tensor formulas. It then introduces the concept of homogeneous functions when the domain U is a cone, as well as the relationship between the Clebsch covariant S(f) and the sectional curvature. Using an open subset U in R3 and a hypersurface M = {f = 1}, the sectional curvature at a point on a 2-plane tangent to M can be expressed in terms of S(f) and the Hessian matrix H(f), where f is a homogeneous polynomial on R3. The condition for the invariant S(f) to be zero is equivalent to the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations, which implies that f can be represented in two specific forms.

References

[1]  Dubrovin, B. (1996) Geometry of 2D Topological Field Theories. In: Lecture Notes in Mathematics, Springer, 120-348.
https://doi.org/10.1007/bfb0094793
[2]  Dubrovin, B. (1999) Painlevé Transcendents in Two-Dimensional Topological Field Theory. In: The Painlevé Property, Springer, 287-412.
https://doi.org/10.1007/978-1-4612-1532-5_6
[3]  Liu, K., Xu, H. and Zhi, Y. (2021) Affine Geometry and Frobenius Algebra.
[4]  Wilson, P. (2004) Sectional curvatures of Kähler moduli. Mathematische Annalen, 330, 631-664.
https://doi.org/10.1007/s00208-004-0563-9
[5]  O’Neill, B. (1983) Semi-Riemannian Geometry with Applications to Relativity. Academic Press.
[6]  Alexander, S. (1978) Book Review: A Comprehensive Introduction to Differential Geometry. Bulletin of the American Mathematical Society, 84, 27-33.
https://doi.org/10.1090/s0002-9904-1978-14399-7
[7]  Jiang, R., Tavakoli, J., and Zhao, Y. (2020) Information Geometry and Frobenius Algebra.
[8]  Clebsch, A. (1861) Über Curven vierter Ordnung. Journal für die reine und angewandte Mathematik, 59, 125-145.
[9]  Dolgachev, I. and Kanev, V. (1993) Polar Covariants of Plane Cubics and Quartics. Advances in Mathematics, 98, 216-301.
https://doi.org/10.1006/aima.1993.1016
[10]  Totaro, B. (2004) The Curvature of a Hessian Metric. International Journal of Mathematics, 15, 369-391.
https://doi.org/10.1142/s0129167x04002338
[11]  Lindemann, D. (2023) Properties of the Moduli Set of Complete Connected Projective Special Real Manifolds. Mathematische Zeitschrift, 303, Article No. 37.
https://doi.org/10.1007/s00209-022-03184-4
[12]  Olver, P.J. (1999) Classical Invariant Theory. Cambridge University Press, 26-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133