|
Pure Mathematics 2025
高斯域上一种加权形式的Erd?s-Kac定理
|
Abstract:
Erd?s-Kac定理是数论中的一个经典结果,它描述了在自然数范围内,整数的不同素因子个数的分布渐进服从正态分布。本文主要目的是将Erd?s-Kac定理在高斯域中进行推广,令
是高斯域,
是其整数环。设
,
表示其不同的素因子个数,
是高斯域上
重除数函数。我们用围道积分法,推导出
的加权均值和
阶中心矩,并由此推导出高斯域上权重为
的Erd?s-Kac定理。这一结果不仅丰富了数论中的分布理论,也为进一步研究高斯域中的数论问题提供了新的工具和方法。
The Erd?s-Kac theorem is a classical result in number theory, which describes that the distribution of the number of distinct prime factors of integers asymptotically follows a normal distribution. The primary aim of this paper is to extend the Erd?s-Kac theorem to Gaussian fields. Let
be a Gaussian field and
be its ring of integers. Let
, and
denote the number of distinct prime factors of
. Let
be the
[1] | Hardy, G.H. and Ramanujan, S. (1917) The Normal Number of Prime Factors of a Number n. Quarterly Journal of Mathematics, 48, 76-92. |
[2] | Turán, P. (1934) On a Theorem of Hardy and Ramanujan. Journal of the London Mathematical Society, 1, 274-276. https://doi.org/10.1112/jlms/s1-9.4.274 |
[3] | Erdos, P. and Kac, M. (1940) The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions. American Journal of Mathematics, 62, 738-742. https://doi.org/10.2307/2371483 |
[4] | Elliott, P.D.T.A. (2014) Central Limit Theorems for Classical Cusp Forms. The Ramanujan Journal, 36, 81-98. https://doi.org/10.1007/s11139-013-9516-9 |
[5] | Billingsley, P. (1969) On the Central Limit Theorem for the Prime Divisor Function. The American Mathematical Monthly, 76, 132-139. https://doi.org/10.1080/00029890.1969.12000157 |
[6] | Khan, R., Milinovich, M.B. and Subedi, U. (2022) A Weighted Version of the Erdős-Kac Theorem. Journal of Number Theory, 239, 1-20. https://doi.org/10.1016/j.jnt.2021.10.010 |
[7] | Liu, Y. (2004) A Generalization of the Erdös-Kac Theorem and Its Applications. Canadian Mathematical Bulletin, 47, 589-606. https://doi.org/10.4153/cmb-2004-057-4 |
[8] | Lee, E.S. (2023) Explicit Mertens’ Theorems for Number Fields. Bulletin of the Australian Mathematical Society, 108, 169-172. https://doi.org/10.1017/s0004972723000308 |
[9] | Lü, G. and Yang, Z. (2011) The Average Behavior of the Coefficients of Dedekind Zeta Function over Square Numbers. Journal of Number Theory, 131, 1924-1938. https://doi.org/10.1016/j.jnt.2011.01.018 |
[10] | Iwaniec, H. and Kowalski, E. (2004) Analytic Number Theory. AMS Colloquium Publications, Vol. 53, American Mathematical Society. |