全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高斯域上一种加权形式的Erd?s-Kac定理
A Weighted Form of the Erd?s-Kac Theorem over Gaussian Fields

DOI: 10.12677/pm.2025.154117, PP. 138-150

Keywords: 除数函数,Erd?s-Kac定理,高斯域,围道积分法
Divisor Function
, Erd?s-Kac Theorem, Gaussian Field, Contour Integration Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

Erd?s-Kac定理是数论中的一个经典结果,它描述了在自然数范围内,整数的不同素因子个数的分布渐进服从正态分布。本文主要目的是将Erd?s-Kac定理在高斯域中进行推广,令 K 是高斯域, O K 是其整数环。设 a O K ω( a ) 表示其不同的素因子个数, τ k ( a ) 是高斯域上 k 重除数函数。我们用围道积分法,推导出 ω( a ) 的加权均值和 m 阶中心矩,并由此推导出高斯域上权重为 τ k ( a ) 的Erd?s-Kac定理。这一结果不仅丰富了数论中的分布理论,也为进一步研究高斯域中的数论问题提供了新的工具和方法。
The Erd?s-Kac theorem is a classical result in number theory, which describes that the distribution of the number of distinct prime factors of integers asymptotically follows a normal distribution. The primary aim of this paper is to extend the Erd?s-Kac theorem to Gaussian fields. Let K be a Gaussian field and O K be its ring of integers. Let a O K , and ω( a ) denote the number of distinct prime factors of a . Let τ k ( a ) be the

References

[1]  Hardy, G.H. and Ramanujan, S. (1917) The Normal Number of Prime Factors of a Number n. Quarterly Journal of Mathematics, 48, 76-92.
[2]  Turán, P. (1934) On a Theorem of Hardy and Ramanujan. Journal of the London Mathematical Society, 1, 274-276.
https://doi.org/10.1112/jlms/s1-9.4.274
[3]  Erdos, P. and Kac, M. (1940) The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions. American Journal of Mathematics, 62, 738-742.
https://doi.org/10.2307/2371483
[4]  Elliott, P.D.T.A. (2014) Central Limit Theorems for Classical Cusp Forms. The Ramanujan Journal, 36, 81-98.
https://doi.org/10.1007/s11139-013-9516-9
[5]  Billingsley, P. (1969) On the Central Limit Theorem for the Prime Divisor Function. The American Mathematical Monthly, 76, 132-139.
https://doi.org/10.1080/00029890.1969.12000157
[6]  Khan, R., Milinovich, M.B. and Subedi, U. (2022) A Weighted Version of the Erdős-Kac Theorem. Journal of Number Theory, 239, 1-20.
https://doi.org/10.1016/j.jnt.2021.10.010
[7]  Liu, Y. (2004) A Generalization of the Erdös-Kac Theorem and Its Applications. Canadian Mathematical Bulletin, 47, 589-606.
https://doi.org/10.4153/cmb-2004-057-4
[8]  Lee, E.S. (2023) Explicit Mertens’ Theorems for Number Fields. Bulletin of the Australian Mathematical Society, 108, 169-172.
https://doi.org/10.1017/s0004972723000308
[9]  Lü, G. and Yang, Z. (2011) The Average Behavior of the Coefficients of Dedekind Zeta Function over Square Numbers. Journal of Number Theory, 131, 1924-1938.
https://doi.org/10.1016/j.jnt.2011.01.018
[10]  Iwaniec, H. and Kowalski, E. (2004) Analytic Number Theory. AMS Colloquium Publications, Vol. 53, American Mathematical Society.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133