全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Psychology  2025 

The Interplay of Breath and Emotion: A Novel Cardio-Respiratory-Cortical-Limbic Network Framework

DOI: 10.4236/psych.2025.164025, PP. 453-465

Keywords: Anxiety, Depression, Chronic Abnormal Breathing, Bioelectric Oscillations, Lung-Emotion Connection, Neurotransmitters in Lungs, Cardio-Respiratory-Cortical-Limbic Network, Therapeutic Potential of Controlled Breathing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lung’s influence on our emotional well-being, beyond its primary role in respiration, remains a compelling scientific mystery. Here, we put forth a unique perspective: emotional coordination and regulation are actively influenced by the bioelectric rhythms between respiratory and cardiac activities. Current models emphasize the cognitive basis of emotions, but we posit that dysfunctional breathing patterns can directly drive and amplify emotional experiences. Research suggests that persistent anxiety states are linked to instable, shallow, and irregular breathing. Key neurotransmitters involved in emotional regulation are also found within the lungs and heart, further supporting a direct physiological link as an extension of the limbic system. We believe that the brainstem’s cardio-respiratory center, through continuous engagement, fluctuates limbic and other brain regions, creating a cardio-respiratory-cortical-limbic network. This network, supported by bioelectric rhythms, plays a pivotal role in generating and amplifying emotions; synchronized rhythms give rise to distinct experiences such as anxiety or joy. Chronic abnormal breathing patterns, evident in emotional disorders, play a pivotal role in perpetuating negative emotional states. We propose a potential therapeutic intervention: 6 slow, deep breaths per minute could disrupt negative emotional patterns. This perspective offers a new understanding on emotional coordination and the potential for respiration-focused therapies for stress and anxiety disorders.

References

[1]  Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation and Immunity Enhancement Effects of γ‐Aminobutyric Acid (GABA) Administration in Humans. BioFactors, 26, 201-208.
https://doi.org/10.1002/biof.5520260305
[2]  Arias-López, J. A., Williams, C., Raghvani, R., Aghajani, M., Baez, S., Belzung, C. et al. (2020). The Neuroscience of Sadness: A Multidisciplinary Synthesis and Collaborative Review. Neuroscience & Biobehavioral Reviews, 111, 199-228.
https://doi.org/10.1016/j.neubiorev.2020.01.006
[3]  Ashhad, S., Kam, K., Del Negro, C. A., & Feldman, J. L. (2022). Breathing Rhythm and Pattern and Their Influence on Emotion. Annual Review of Neuroscience, 45, 223-247.
https://doi.org/10.1146/annurev-neuro-090121-014424
[4]  Balban, M. Y., Neri, E., Kogon, M. M., Weed, L., Nouriani, B., Jo, B. et al. (2023). Brief Structured Respiration Practices Enhance Mood and Reduce Physiological Arousal. Cell Reports Medicine, 4, Article ID: 100895.
https://doi.org/10.1016/j.xcrm.2022.100895
[5]  Bonham, A. C. (1995). Neurotransmitters in the CNS Control of Breathing. Respiration Physiology, 101, 219-230.
https://doi.org/10.1016/0034-5687(95)00045-f
[6]  Boyadzhieva, A., & Kayhan, E. (2021). Keeping the Breath in Mind: Respiration, Neural Oscillations, and the Free Energy Principle. Frontiers in Neuroscience, 15, Article ID: 647579.
https://doi.org/10.3389/fnins.2021.647579
[7]  Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Frontiers in Psychiatry, 9, Article No. 44.
https://doi.org/10.3389/fpsyt.2018.00044
[8]  Brinkman, J. E. (2023, June 5). Physiology, Respiratory Drive. StatPearls Publishing.
https://www.ncbi.nlm.nih.gov/books/NBK482414/
[9]  British Heart Foundation (n.d.). Is the Heart Connected to the Brain.
https://www.bhf.org.uk/informationsupport/heart-matters-magazine/research/is-the-heart-connected-to-the-brain
[10]  Buchanan, T. L., & Janelle, C. M. (2022). Emotions and Ensuing Motor Performance Are Altered by Regulating Breathing Frequency: Implications for Emotion Regulation and Sport Performance. Frontiers in Psychology, 13, Article ID: 963711.
https://doi.org/10.3389/fpsyg.2022.963711
[11]  Campanelli, S., Lopes Tort, A., & Lobão-Soares, B. (2020). Pranayamas and Their Neurophysiological Effects. International Journal of Yoga, 13, 183-192.
https://doi.org/10.4103/ijoy.ijoy_91_19
[12]  Dick, T. E., Shannon, R., Lindsey, B. G., Nuding, S. C., Segers, L. S., Baekey, D. M. et al. (2008). Pontine Respiratory‐Modulated Activity before and after Vagotomy in Decerebrate Cats. The Journal of Physiology, 586, 4265-4282.
https://doi.org/10.1113/jphysiol.2008.152108
[13]  Dobrakowski, P., Blaszkiewicz, M., & Skalski, S. (2020). Changes in the Electrical Activity of the Brain in the Alpha and Theta Bands during Prayer and Meditation. International Journal of Environmental Research and Public Health, 17, Article No. 9567.
https://doi.org/10.3390/ijerph17249567
[14]  Fincham, G. W., Strauss, C., Montero-Marin, J., & Cavanagh, K. (2023). Effect of Breathwork on Stress and Mental Health: A Meta-Analysis of Randomised-Controlled Trials. Scientific Reports, 13, Article No. 432.
https://doi.org/10.1038/s41598-022-27247-y
[15]  Folschweiller, S., & Sauer, J. (2021). Respiration-Driven Brain Oscillations in Emotional Cognition. Frontiers in Neural Circuits, 15, Article ID: 761812.
https://doi.org/10.3389/fncir.2021.761812
[16]  Friedman, B. H. (2009). Feelings and the Body: The Jamesian Perspective on Autonomic Specificity of Emotion. Biological Psychology, 84, 383-393.
[17]  Gao, J., Sun, R., Leung, H. K., Roberts, A., Wu, B. W. Y., Tsang, E. W. et al. (2023). Increased Neurocardiological Interplay after Mindfulness Meditation: A Brain Oscillation-Based Approach. Frontiers in Human Neuroscience, 17, Article ID: 1008490.
https://doi.org/10.3389/fnhum.2023.1008490
[18]  Gu, X., Karp, P. H., Brody, S. L., Pierce, R. A., Welsh, M. J., Holtzman, M. J. et al. (2014). Chemosensory Functions for Pulmonary Neuroendocrine Cells. American Journal of Respiratory Cell and Molecular Biology, 50, 637-646.
https://doi.org/10.1165/rcmb.2013-0199oc
[19]  Guyenet, P. G. (2014). Regulation of Breathing and Autonomic Outflows by Chemoreceptors. Comprehensive Physiology, 4, 1511-1562.
https://doi.org/10.1002/cphy.c140004.
[20]  Haddad, M. (2023, July 20). Physiology, Lung. StatPearls Publishing.
https://www.ncbi.nlm.nih.gov/books/NBK545177/
[21]  Haji, A. (2008). Respiratory Neurotransmitters and Neuromodulators. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of Neuroscience (pp. 3467-3470). Springer.
https://doi.org/10.1007/978-3-540-29678-2_5076
[22]  Harris, M. P. (2021). Bioelectric Signaling as a Unique Regulator of Development and Regeneration. Development, 148, dev180794.
https://doi.org/10.1242/dev.180794
[23]  Heck, D. H., Correia, B. L., Fox, M. B., Liu, Y., Allen, M., & Varga, S. (2022). Recent Insights into Respiratory Modulation of Brain Activity Offer New Perspectives on Cognition and Emotion. Biological Psychology, 170, Article ID: 108316.
https://doi.org/10.1016/j.biopsycho.2022.108316
[24]  Izard, C. E. (2009). Emotion Theory and Research: Highlights, Unanswered Questions, and Emerging Issues. Annual Review of Psychology, 60, 1-25.
https://doi.org/10.1146/annurev.psych.60.110707.163539
[25]  Jerath, R., & Beveridge, C. (2018). Novel Bioelectric Mechanisms and Functional Significance of Peripheral and Central Entrainment by Respiration. World Journal of Neuroscience, 8, 480-500.
https://doi.org/10.4236/wjns.2018.84038
[26]  Jerath, R., & Beveridge, C. (2020). Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation. Frontiers in Psychology, 11, Article No. 1980.
https://doi.org/10.3389/fpsyg.2020.01980
[27]  Jerath, R., & Crawford, M. W. (2015). How Does the Body Affect the Mind? Role of Cardiorespiratory Coherence in the Spectrum of Emotions. Advances in Mind-Body Medicine, 29, 4.
[28]  Jerath, R., Beveridge, C., & Jensen, M. (2019). On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Frontiers in Human Neuroscience, 13, Article No. 426.
https://doi.org/10.3389/fnhum.2019.00426
[29]  Kim, D., Lee, K., Kim, J., Whang, M., & Kang, S. W. (2013). Dynamic Correlations between Heart and Brain Rhythm during Autogenic Meditation. Frontiers in Human Neuroscience, 7, Article No. 414.
https://doi.org/10.3389/fnhum.2013.00414
[30]  Kuo, C. S., Darmanis, S., Diaz de Arce, A., Liu, Y., Almanzar, N., Wu, T. T. et al. (2022). Neuroendocrinology of the Lung Revealed by Single-Cell RNA Sequencing. eLife, 11, e78216.
https://doi.org/10.7554/elife.78216
[31]  Law, C. S. H., & Leung, L. S. (2018). Long-Term Potentiation and Excitability in the Hippocampus Are Modulated Differently by Θ Rhythm. eNeuro, 5, ENEURO.0236-18.2018.
https://doi.org/10.1523/eneuro.0236-18.2018
[32]  Lee, Y., Ryu, Y., Jung, W., Kim, J., Lee, T., & Chae, Y. (2017). Understanding Mind‐Body Interaction from the Perspective of East Asian Medicine. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 7618419.
https://doi.org/10.1155/2017/7618419
[33]  Leung, L. S., & Law, C. S. H. (2020). Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm. Behavioral Neuroscience, 134, 595-612.
https://doi.org/10.1037/bne0000354
[34]  Lisman, J. (2015). The Challenge of Understanding the Brain: Where We Stand in 2015. Neuron, 86, 864-882.
https://doi.org/10.1016/j.neuron.2015.03.032
[35]  Maric, V., Ramanathan, D., & Mishra, J. (2020). Respiratory Regulation & Interactions with Neuro-Cognitive Circuitry. Neuroscience & Biobehavioral Reviews, 112, 95-106.
https://doi.org/10.1016/j.neubiorev.2020.02.001
[36]  Martinek, R., Ladrova, M., Sidikova, M., Jaros, R., Behbehani, K., Kahankova, R. et al. (2021). Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach—Part I: Cardiac Signals. Sensors, 21, Article No. 5186.
https://doi.org/10.3390/s21155186
[37]  Noble, D. J., & Hochman, S. (2019). Hypothesis: Pulmonary Afferent Activity Patterns during Slow, Deep Breathing Contribute to the Neural Induction of Physiological Relaxation. Frontiers in Physiology, 10, Article No. 1176.
https://doi.org/10.3389/fphys.2019.01176
[38]  Ojeda Valencia, G., Gregg, N. M., Huang, H., Lundstrom, B. N., Brinkmann, B. H., Pal Attia, T. et al. (2023). Signatures of Electrical Stimulation Driven Network Interactions in the Human Limbic System. The Journal of Neuroscience, 43, 6697-6711.
https://doi.org/10.1523/jneurosci.2201-22.2023
[39]  Oku, Y. (2022). Temporal Variations in the Pattern of Breathing: Techniques, Sources, and Applications to Translational Sciences. The Journal of Physiological Sciences, 72, Article No. 22.
https://doi.org/10.1186/s12576-022-00847-z
[40]  Owens, M. T., & Tanner, K. D. (2017). Teaching as Brain Changing: Exploring Connections between Neuroscience and Innovative Teaching. CBE—Life Sciences Education, 16, fe2.
https://doi.org/10.1187/cbe.17-01-0005
[41]  Pace-Schott, E. F., Amole, M. C., Aue, T., Balconi, M., Bylsma, L. M., Critchley, H. et al. (2019). Physiological Feelings. Neuroscience & Biobehavioral Reviews, 103, 267-304.
https://doi.org/10.1016/j.neubiorev.2019.05.002
[42]  Rolls, E. T. (2019). The Cingulate Cortex and Limbic Systems for Action, Emotion, and Memory. In Handbook of Clinical Neurology (pp. 23-37). Elsevier.
https://doi.org/10.1016/b978-0-444-64196-0.00002-9
[43]  Russo, M. A., Santarelli, D. M., & O’Rourke, D. (2017). The Physiological Effects of Slow Breathing in the Healthy Human. Breathe, 13, 298-309.
https://doi.org/10.1183/20734735.009817
[44]  Schnorbusch, K., Lembrechts, R., Pintelon, I., Timmermans, J., Brouns, I., & Adriaensen, D. (2013). Gabaergic Signaling in the Pulmonary Neuroepithelial Body Microenvironment: Functional Imaging in GAD67-GFP Mice. Histochemistry and Cell Biology, 140, 549-566.
https://doi.org/10.1007/s00418-013-1093-x
[45]  Trost, W., & Vuilleumier, P. (2013). Rhythmic Entrainment as a Mechanism for Emotion Induction by Music. In T. Cochrane, et al. (Eds.), The Emotional Power of Music: Multidisciplinary Perspectives on Musical Arousal, Expression, and Social Control (pp. 213-225). Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199654888.003.0016
[46]  Tyng, C. M., Amin, H. U., Saad, M. N. M., & Malik, A. S. (2017). The Influences of Emotion on Learning and Memory. Frontiers in Psychology, 8, Article No. 1454.
https://doi.org/10.3389/fpsyg.2017.01454
[47]  Valentinuzzi, M. E. (2007). Bioelectrical Signal Processing in Cardiac and Neurological Applications and Electromyography: Physiology, Engineering, and Noninvasive Applications. BioMedical Engineering OnLine, 6, Article No. 27.
https://doi.org/10.1186/1475-925x-6-27
[48]  Vidotto, L. S., Bigliassi, M., Jones, M. O., Harvey, A., & Carvalho, C. R. F. (2018). Stop Thinking! I Can’t! Do Attentional Mechanisms Underlie Primary Dysfunctional Breathing? Frontiers in Physiology, 9, Article No. 782.
https://doi.org/10.3389/fphys.2018.00782
[49]  Vidotto, L. S., Carvalho, C. R. F. d., Harvey, A., & Jones, M. (2019). Dysfunctional Breathing: What Do We Know? Jornal Brasileiro de Pneumologia, 45, e20170347.
https://doi.org/10.1590/1806-3713/e20170347
[50]  Von Leupoldt, A., Vovk, A., Bradley, M. M., Keil, A., Lang, P. J., & Davenport, P. W. (2010). The Impact of Emotion on Respiratory-Related Evoked Potentials. Psychophysiology, 47, 579-586.
https://doi.org/10.1111/j.1469-8986.2009.00956.x
[51]  Weng, H. Y., Feldman, J. L., Leggio, L., Napadow, V., Park, J., & Price, C. J. (2021). Interventions and Manipulations of Interoception. Trends in Neurosciences, 44, 52-62.
https://doi.org/10.1016/j.tins.2020.09.010
[52]  Wolff, M., Morceau, S., Folkard, R., Martin-Cortecero, J., & Groh, A. (2021). A Thalamic Bridge from Sensory Perception to Cognition. Neuroscience & Biobehavioral Reviews, 120, 222-235.
https://doi.org/10.1016/j.neubiorev.2020.11.013
[53]  Zaccaro, A., Perrucci, M. G., Parrotta, E., Costantini, M., & Ferri, F. (2022). Brain-Heart Interactions Are Modulated across the Respiratory Cycle via Interoceptive Attention. NeuroImage, 262, Article ID: 119548.
https://doi.org/10.1016/j.neuroimage.2022.119548
[54]  Zaccaro, A., Piarulli, A., Laurino, M., Garbella, E., Menicucci, D., Neri, B. et al. (2018). How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Frontiers in Human Neuroscience, 12, Article No. 353.
https://doi.org/10.3389/fnhum.2018.00353
[55]  Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J. et al. (2016). Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. The Journal of Neuroscience, 36, 12448-12467.
https://doi.org/10.1523/jneurosci.2586-16.2016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133