The lung’s influence on our emotional well-being, beyond its primary role in respiration, remains a compelling scientific mystery. Here, we put forth a unique perspective: emotional coordination and regulation are actively influenced by the bioelectric rhythms between respiratory and cardiac activities. Current models emphasize the cognitive basis of emotions, but we posit that dysfunctional breathing patterns can directly drive and amplify emotional experiences. Research suggests that persistent anxiety states are linked to instable, shallow, and irregular breathing. Key neurotransmitters involved in emotional regulation are also found within the lungs and heart, further supporting a direct physiological link as an extension of the limbic system. We believe that the brainstem’s cardio-respiratory center, through continuous engagement, fluctuates limbic and other brain regions, creating a cardio-respiratory-cortical-limbic network. This network, supported by bioelectric rhythms, plays a pivotal role in generating and amplifying emotions; synchronized rhythms give rise to distinct experiences such as anxiety or joy. Chronic abnormal breathing patterns, evident in emotional disorders, play a pivotal role in perpetuating negative emotional states. We propose a potential therapeutic intervention: 6 slow, deep breaths per minute could disrupt negative emotional patterns. This perspective offers a new understanding on emotional coordination and the potential for respiration-focused therapies for stress and anxiety disorders.
References
[1]
Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation and Immunity Enhancement Effects of γ‐Aminobutyric Acid (GABA) Administration in Humans. BioFactors,26, 201-208. https://doi.org/10.1002/biof.5520260305
[2]
Arias-López, J. A., Williams, C., Raghvani, R., Aghajani, M., Baez, S., Belzung, C. et al. (2020). The Neuroscience of Sadness: A Multidisciplinary Synthesis and Collaborative Review. Neuroscience&BiobehavioralReviews,111, 199-228. https://doi.org/10.1016/j.neubiorev.2020.01.006
[3]
Ashhad, S., Kam, K., Del Negro, C. A., & Feldman, J. L. (2022). Breathing Rhythm and Pattern and Their Influence on Emotion. AnnualReviewofNeuroscience,45, 223-247. https://doi.org/10.1146/annurev-neuro-090121-014424
[4]
Balban, M. Y., Neri, E., Kogon, M. M., Weed, L., Nouriani, B., Jo, B. et al. (2023). Brief Structured Respiration Practices Enhance Mood and Reduce Physiological Arousal. CellReportsMedicine,4, Article ID: 100895. https://doi.org/10.1016/j.xcrm.2022.100895
[5]
Bonham, A. C. (1995). Neurotransmitters in the CNS Control of Breathing. RespirationPhysiology,101, 219-230. https://doi.org/10.1016/0034-5687(95)00045-f
[6]
Boyadzhieva, A., & Kayhan, E. (2021). Keeping the Breath in Mind: Respiration, Neural Oscillations, and the Free Energy Principle. FrontiersinNeuroscience,15, Article ID: 647579. https://doi.org/10.3389/fnins.2021.647579
[7]
Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. FrontiersinPsychiatry,9, Article No. 44. https://doi.org/10.3389/fpsyt.2018.00044
[8]
Brinkman, J. E. (2023, June 5). Physiology,RespiratoryDrive. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482414/
[9]
British Heart Foundation (n.d.). Isthe Heart Connectedtothe Brain. https://www.bhf.org.uk/informationsupport/heart-matters-magazine/research/is-the-heart-connected-to-the-brain
[10]
Buchanan, T. L., & Janelle, C. M. (2022). Emotions and Ensuing Motor Performance Are Altered by Regulating Breathing Frequency: Implications for Emotion Regulation and Sport Performance. FrontiersinPsychology,13, Article ID: 963711. https://doi.org/10.3389/fpsyg.2022.963711
[11]
Campanelli, S., Lopes Tort, A., & Lobão-Soares, B. (2020). Pranayamas and Their Neurophysiological Effects. InternationalJournalofYoga,13, 183-192. https://doi.org/10.4103/ijoy.ijoy_91_19
[12]
Dick, T. E., Shannon, R., Lindsey, B. G., Nuding, S. C., Segers, L. S., Baekey, D. M. et al. (2008). Pontine Respiratory‐Modulated Activity before and after Vagotomy in Decerebrate Cats. TheJournalofPhysiology,586, 4265-4282. https://doi.org/10.1113/jphysiol.2008.152108
[13]
Dobrakowski, P., Blaszkiewicz, M., & Skalski, S. (2020). Changes in the Electrical Activity of the Brain in the Alpha and Theta Bands during Prayer and Meditation. InternationalJournalofEnvironmentalResearchandPublicHealth,17, Article No. 9567. https://doi.org/10.3390/ijerph17249567
[14]
Fincham, G. W., Strauss, C., Montero-Marin, J., & Cavanagh, K. (2023). Effect of Breathwork on Stress and Mental Health: A Meta-Analysis of Randomised-Controlled Trials. ScientificReports,13, Article No. 432. https://doi.org/10.1038/s41598-022-27247-y
[15]
Folschweiller, S., & Sauer, J. (2021). Respiration-Driven Brain Oscillations in Emotional Cognition. FrontiersinNeuralCircuits,15, Article ID: 761812. https://doi.org/10.3389/fncir.2021.761812
[16]
Friedman, B. H. (2009). Feelings and the Body: The Jamesian Perspective on Autonomic Specificity of Emotion. Biological Psychology, 84, 383-393.
[17]
Gao, J., Sun, R., Leung, H. K., Roberts, A., Wu, B. W. Y., Tsang, E. W. et al. (2023). Increased Neurocardiological Interplay after Mindfulness Meditation: A Brain Oscillation-Based Approach. FrontiersinHumanNeuroscience,17, Article ID: 1008490. https://doi.org/10.3389/fnhum.2023.1008490
[18]
Gu, X., Karp, P. H., Brody, S. L., Pierce, R. A., Welsh, M. J., Holtzman, M. J. et al. (2014). Chemosensory Functions for Pulmonary Neuroendocrine Cells. AmericanJournalofRespiratoryCellandMolecularBiology,50, 637-646. https://doi.org/10.1165/rcmb.2013-0199oc
[19]
Guyenet, P. G. (2014). Regulation of Breathing and Autonomic Outflows by Chemoreceptors. ComprehensivePhysiology,4, 1511-1562. https://doi.org/10.1002/cphy.c140004.
[20]
Haddad, M. (2023, July 20). Physiology,Lung. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545177/
[21]
Haji, A. (2008). Respiratory Neurotransmitters and Neuromodulators. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of Neuroscience (pp. 3467-3470). Springer. https://doi.org/10.1007/978-3-540-29678-2_5076
[22]
Harris, M. P. (2021). Bioelectric Signaling as a Unique Regulator of Development and Regeneration. Development,148, dev180794. https://doi.org/10.1242/dev.180794
[23]
Heck, D. H., Correia, B. L., Fox, M. B., Liu, Y., Allen, M., & Varga, S. (2022). Recent Insights into Respiratory Modulation of Brain Activity Offer New Perspectives on Cognition and Emotion. BiologicalPsychology,170, Article ID: 108316. https://doi.org/10.1016/j.biopsycho.2022.108316
[24]
Izard, C. E. (2009). Emotion Theory and Research: Highlights, Unanswered Questions, and Emerging Issues. AnnualReviewofPsychology,60, 1-25. https://doi.org/10.1146/annurev.psych.60.110707.163539
[25]
Jerath, R., & Beveridge, C. (2018). Novel Bioelectric Mechanisms and Functional Significance of Peripheral and Central Entrainment by Respiration. WorldJournalofNeuroscience,8, 480-500. https://doi.org/10.4236/wjns.2018.84038
[26]
Jerath, R., & Beveridge, C. (2020). Respiratory Rhythm, Autonomic Modulation, and the Spectrum of Emotions: The Future of Emotion Recognition and Modulation. FrontiersinPsychology,11, Article No. 1980. https://doi.org/10.3389/fpsyg.2020.01980
[27]
Jerath, R., & Crawford, M. W. (2015). How Does the Body Affect the Mind? Role of Cardiorespiratory Coherence in the Spectrum of Emotions. Advancesin Mind-Body Medicine,29, 4.
[28]
Jerath, R., Beveridge, C., & Jensen, M. (2019). On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. FrontiersinHumanNeuroscience,13, Article No. 426. https://doi.org/10.3389/fnhum.2019.00426
[29]
Kim, D., Lee, K., Kim, J., Whang, M., & Kang, S. W. (2013). Dynamic Correlations between Heart and Brain Rhythm during Autogenic Meditation. FrontiersinHumanNeuroscience,7, Article No. 414. https://doi.org/10.3389/fnhum.2013.00414
[30]
Kuo, C. S., Darmanis, S., Diaz de Arce, A., Liu, Y., Almanzar, N., Wu, T. T. et al. (2022). Neuroendocrinology of the Lung Revealed by Single-Cell RNA Sequencing. eLife,11, e78216. https://doi.org/10.7554/elife.78216
[31]
Law, C. S. H., & Leung, L. S. (2018). Long-Term Potentiation and Excitability in the Hippocampus Are Modulated Differently by Θ Rhythm. eNeuro,5, ENEURO.0236-18.2018. https://doi.org/10.1523/eneuro.0236-18.2018
[32]
Lee, Y., Ryu, Y., Jung, W., Kim, J., Lee, T., & Chae, Y. (2017). Understanding Mind‐Body Interaction from the Perspective of East Asian Medicine. Evidence-BasedComplementaryandAlternativeMedicine,2017, Article ID: 7618419. https://doi.org/10.1155/2017/7618419
[33]
Leung, L. S., & Law, C. S. H. (2020). Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm. BehavioralNeuroscience,134, 595-612. https://doi.org/10.1037/bne0000354
[34]
Lisman, J. (2015). The Challenge of Understanding the Brain: Where We Stand in 2015. Neuron, 86, 864-882. https://doi.org/10.1016/j.neuron.2015.03.032
[35]
Maric, V., Ramanathan, D., & Mishra, J. (2020). Respiratory Regulation & Interactions with Neuro-Cognitive Circuitry. Neuroscience&BiobehavioralReviews,112, 95-106. https://doi.org/10.1016/j.neubiorev.2020.02.001
[36]
Martinek, R., Ladrova, M., Sidikova, M., Jaros, R., Behbehani, K., Kahankova, R. et al. (2021). Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach—Part I: Cardiac Signals. Sensors,21, Article No. 5186. https://doi.org/10.3390/s21155186
[37]
Noble, D. J., & Hochman, S. (2019). Hypothesis: Pulmonary Afferent Activity Patterns during Slow, Deep Breathing Contribute to the Neural Induction of Physiological Relaxation. FrontiersinPhysiology,10, Article No. 1176. https://doi.org/10.3389/fphys.2019.01176
[38]
Ojeda Valencia, G., Gregg, N. M., Huang, H., Lundstrom, B. N., Brinkmann, B. H., Pal Attia, T. et al. (2023). Signatures of Electrical Stimulation Driven Network Interactions in the Human Limbic System. TheJournalofNeuroscience,43, 6697-6711. https://doi.org/10.1523/jneurosci.2201-22.2023
[39]
Oku, Y. (2022). Temporal Variations in the Pattern of Breathing: Techniques, Sources, and Applications to Translational Sciences. TheJournalofPhysiologicalSciences,72, Article No. 22. https://doi.org/10.1186/s12576-022-00847-z
[40]
Owens, M. T., & Tanner, K. D. (2017). Teaching as Brain Changing: Exploring Connections between Neuroscience and Innovative Teaching. CBE—LifeSciencesEducation,16, fe2. https://doi.org/10.1187/cbe.17-01-0005
[41]
Pace-Schott, E. F., Amole, M. C., Aue, T., Balconi, M., Bylsma, L. M., Critchley, H. et al. (2019). Physiological Feelings. Neuroscience&BiobehavioralReviews,103, 267-304. https://doi.org/10.1016/j.neubiorev.2019.05.002
[42]
Rolls, E. T. (2019). The Cingulate Cortex and Limbic Systems for Action, Emotion, and Memory. In HandbookofClinicalNeurology (pp. 23-37). Elsevier. https://doi.org/10.1016/b978-0-444-64196-0.00002-9
[43]
Russo, M. A., Santarelli, D. M., & O’Rourke, D. (2017). The Physiological Effects of Slow Breathing in the Healthy Human. Breathe,13, 298-309. https://doi.org/10.1183/20734735.009817
[44]
Schnorbusch, K., Lembrechts, R., Pintelon, I., Timmermans, J., Brouns, I., & Adriaensen, D. (2013). Gabaergic Signaling in the Pulmonary Neuroepithelial Body Microenvironment: Functional Imaging in GAD67-GFP Mice. HistochemistryandCellBiology,140, 549-566. https://doi.org/10.1007/s00418-013-1093-x
[45]
Trost, W., & Vuilleumier, P. (2013). Rhythmic Entrainment as a Mechanism for Emotion Induction by Music. In T. Cochrane, et al. (Eds.), TheEmotionalPowerofMusic: Multidisciplinary Perspectives on Musical Arousal, Expression, and Social Control (pp. 213-225). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199654888.003.0016
[46]
Tyng, C. M., Amin, H. U., Saad, M. N. M., & Malik, A. S. (2017). The Influences of Emotion on Learning and Memory. FrontiersinPsychology,8, Article No. 1454. https://doi.org/10.3389/fpsyg.2017.01454
[47]
Valentinuzzi, M. E. (2007). Bioelectrical Signal Processing in Cardiac and Neurological Applications and Electromyography: Physiology, Engineering, and Noninvasive Applications. BioMedicalEngineeringOnLine,6, Article No. 27. https://doi.org/10.1186/1475-925x-6-27
[48]
Vidotto, L. S., Bigliassi, M., Jones, M. O., Harvey, A., & Carvalho, C. R. F. (2018). Stop Thinking! I Can’t! Do Attentional Mechanisms Underlie Primary Dysfunctional Breathing? FrontiersinPhysiology,9, Article No. 782. https://doi.org/10.3389/fphys.2018.00782
[49]
Vidotto, L. S., Carvalho, C. R. F. d., Harvey, A., & Jones, M. (2019). Dysfunctional Breathing: What Do We Know? JornalBrasileirodePneumologia,45, e20170347. https://doi.org/10.1590/1806-3713/e20170347
[50]
Von Leupoldt, A., Vovk, A., Bradley, M. M., Keil, A., Lang, P. J., & Davenport, P. W. (2010). The Impact of Emotion on Respiratory-Related Evoked Potentials. Psychophysiology,47, 579-586. https://doi.org/10.1111/j.1469-8986.2009.00956.x
[51]
Weng, H. Y., Feldman, J. L., Leggio, L., Napadow, V., Park, J., & Price, C. J. (2021). Interventions and Manipulations of Interoception. TrendsinNeurosciences,44, 52-62. https://doi.org/10.1016/j.tins.2020.09.010
[52]
Wolff, M., Morceau, S., Folkard, R., Martin-Cortecero, J., & Groh, A. (2021). A Thalamic Bridge from Sensory Perception to Cognition. Neuroscience&BiobehavioralReviews,120, 222-235. https://doi.org/10.1016/j.neubiorev.2020.11.013
[53]
Zaccaro, A., Perrucci, M. G., Parrotta, E., Costantini, M., & Ferri, F. (2022). Brain-Heart Interactions Are Modulated across the Respiratory Cycle via Interoceptive Attention. NeuroImage, 262, Article ID: 119548. https://doi.org/10.1016/j.neuroimage.2022.119548
[54]
Zaccaro, A., Piarulli, A., Laurino, M., Garbella, E., Menicucci, D., Neri, B. et al. (2018). How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. FrontiersinHumanNeuroscience,12, Article No. 353. https://doi.org/10.3389/fnhum.2018.00353
[55]
Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J. et al. (2016). Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. TheJournalofNeuroscience,36, 12448-12467. https://doi.org/10.1523/jneurosci.2586-16.2016