全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于表面化学改性制备疏水玻璃的研究进展
Research Progress in the Preparation of Hydrophobic Glass Based on Surface Chemical Modification

DOI: 10.12677/amc.2025.132017, PP. 149-160

Keywords: 疏水玻璃,超疏表面,玻璃表面改性,静态接触角
Hydrophobic Glass
, Ultra Sparse Surface, Surface Modification of Glass, Static Contact Angle

Full-Text   Cite this paper   Add to My Lib

Abstract:

玻璃因其具有独特的透明性,在工业、军事、国防科研等领域发挥着重要的作用。同时因其具有丰富的功能,在居室及建筑设计等方面用途广泛,但由于其存在清洁性较差、透明度低、机械强度弱和耐磨性差及制作成本高等问题,因此,开发简便、高效的方法获得超疏水玻璃成为近年研究热点之一。本文综述了近年来基于表面改性获得疏水玻璃的研究进展,并按照疏水表面制备方法进行分类,主要包括溶胶–凝胶法、气相沉积法、自组装法及有机–无机材料法,并对该领域的发展前景和局限性进行了总结。
Glass plays an important role in industries, military, national defense research, and other fields due to its unique transparency. At the same time, due to its rich functions, it is widely used in residential and architectural design. However, due to its poor cleanliness, low transparency, weak mechanical strength, poor wear resistance, and high production costs, developing simple and efficient methods to obtain superhydrophobic glass has become one of the research hotspots in recent years. In this paper, the research progress of hydrophobic glass based on surface modification in recent years is reviewed, and it is classified according to the preparation methods of hydrophobic surface, including sol gel method, vapor deposition method, self-assembly method and organic-inorganic material method. The development prospects and limitations of this field are summarized.

References

[1]  Yao, W., Liu, C., Kong, X., Zhang, Z., Wang, Y. and Gao, W. (2023) A Systematic Review of Heat Pipe Applications in Buildings. Journal of Building Engineering, 76, Article 107287.
https://doi.org/10.1016/j.jobe.2023.107287
[2]  Diaz, M.E., Savage, M.D. and Cerro, R.L. (2016) Prediction of Static Contact Angles on the Basis of Molecular Forces and Adsorption Data. Physical Review E, 94, Article 022801.
https://doi.org/10.1103/physreve.94.022801
[3]  Kilic, K.I. and Dauskardt, R.H. (2019) Design of Ultrastiff Organosilicate Hybrid Glasses. Advanced Functional Materials, 29, Article 1904890.
https://doi.org/10.1002/adfm.201904890
[4]  Zhang, J., Zhu, L., Wang, C., Huang, J. and Guo, Z. (2023) Robust Superamphiphobic Coating Applied to Grease-Proof Mining Transformer Components. Langmuir, 39, 7968-7978.
https://doi.org/10.1021/acs.langmuir.3c00858
[5]  Zhong, J., Zheng, X., He, G., Xia, J. and Pu, Z. (2020) Ultralow Dielectric Constant and High Temperature Resistance Composites Based on Self-Crosslinking Polysulfone and Hollow Glass Beads. Journal of Electronic Materials, 49, 7581-7588.
https://doi.org/10.1007/s11664-020-08491-2
[6]  Mollaee, M., Zhu, X., Jenkins, S., Zong, J., Temyanko, E., Norwood, R., et al. (2020) Magneto-Optical Properties of Highly Dy3+ Doped Multicomponent Glasses. Optics Express, 28, 11789-11796.
https://doi.org/10.1364/oe.392008
[7]  Jiang, J., Guo, Q., Wang, B., Zhou, L., Xu, C., Deng, C., et al. (2016) Research on Variation of Static Contact Angle in Incomplete Wetting System and Modeling Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 400-406.
https://doi.org/10.1016/j.colsurfa.2016.05.051
[8]  Duchemin, B., Cazaux, G., Gomina, M. and Bréard, J. (2021) Temperature-Dependence of the Static Contact Angle: A Transition State Theory Approach. Journal of Colloid and Interface Science, 592, 215-226.
https://doi.org/10.1016/j.jcis.2021.02.059
[9]  Hamad, H.L. and Mawlud, S.Q. (2023) Spectroscopic and Surface Wetting Properties of Samarium Doped Lead-Tellurite Glass Embedded with Titanium Nanoparticles: Self-Cleaning Glass. Preprint (Version 1).
https://doi.org/10.21203/rs.3.rs-3266717/v1
[10]  Ivanovski, V., Mayerhöfer, T.G., Kriltz, A. and Popp, J. (2017) IR-ATR Investigation of Surface Anisotropy in Silicate Glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 608-617.
https://doi.org/10.1016/j.saa.2016.10.027
[11]  Wang, Z., Li, H.N., Yu, T.B., Chen, H. and Zhao, J. (2019) On the Predictive Modelling of Machined Surface Topography in Abrasive Air Jet Polishing of Quartz Glass. International Journal of Mechanical Sciences, 152, 1-18.
https://doi.org/10.1016/j.ijmecsci.2018.12.041
[12]  Zheng, W., Van den Hurk, R., Cao, Y., Du, R., Sun, X., Wang, Y., et al. (2016) Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors. Biosensors, 6, Article 8.
https://doi.org/10.3390/bios6010008
[13]  Soldera, M., Alamri, S., Sürmann, P.A., Kunze, T. and Lasagni, A.F. (2021) Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning. Nanomaterials, 11, 129-146.
https://doi.org/10.3390/nano11010129
[14]  Li, Z., Liu, J., Yuan, Y., Li, E. and Wang, F. (2017) Effects of Surface Fluoride-Functionalizing of Glass Fiber on the Properties of PTFE/Glass Fiber Microwave Composites. RSC Advances, 7, 22810-22817.
https://doi.org/10.1039/c7ra02715j
[15]  Chen, Y., Kang, E.T., Neoh, K.G. and Huang, W. (2001) Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. Langmuir, 17, 7425-7432.
https://doi.org/10.1021/la010866y
[16]  Liu, J. and Dong, S. (2000) Grafting of Diaminoalkane on Glassy Carbon Surface and Its Functionalization. Electrochemistry Communications, 2, 707-712.
https://doi.org/10.1016/s1388-2481(00)00105-3
[17]  Yilbas, B.S., Ibrahim, A., Ali, H., Khaled, M. and Laoui, T. (2018) Hydrophobic and Optical Characteristics of Graphene and Graphene Oxide Films Transferred onto Functionalized Silica Particles Deposited Glass Surface. Applied Surface Science, 442, 213-223.
https://doi.org/10.1016/j.apsusc.2018.02.176
[18]  Esmaeilzadeh, J., Hesaraki, S., Hadavi, S.M., Ebrahimzadeh, M.H. and Esfandeh, M. (2017) Poly (D/L) Lactide/Polycaprolactone/Bioactive Glasss Nanocomposites Materials for Anterior Cruciate Ligament Reconstruction Screws: The Effect of Glass Surface Functionalization on Mechanical Properties and Cell Behaviors. Materials Science and Engineering: C, 77, 978-989.
https://doi.org/10.1016/j.msec.2017.03.134
[19]  Hagg, D., Eifert, A., Dörr, A., Bodziony, F. and Marschall, H. (2023) Counter-Intuitive Penetration of Droplets into Hydrophobic Gaps in Theory and Experiment. Scientific Reports, 13, Article No. 16518.
https://doi.org/10.1038/s41598-023-43138-2
[20]  Han, T., Shr, J., Wu, C. and Hsieh, C. (2007) A Modified Wenzel Model for Hydrophobic Behavior of Nanostructured Surfaces. Thin Solid Films, 515, 4666-4669.
https://doi.org/10.1016/j.tsf.2006.11.008
[21]  Hou, B., Wu, C., Li, X., Huang, J. and Chen, M. (2021) Contact Line-Based Model for the Cassie-Wenzel Transition of a Sessile Droplet on the Hydrophobic Micropillar-Structured Surfaces. Applied Surface Science, 542, Article 148611.
https://doi.org/10.1016/j.apsusc.2020.148611
[22]  Hertaeg, M.J., Tabor, R.F., Berry, J.D. and Garnier, G. (2019) Dynamics of Stain Growth from Sessile Droplets on Paper. Journal of Colloid and Interface Science, 541, 312-321.
https://doi.org/10.1016/j.jcis.2019.01.032
[23]  Parvate, S., Dixit, P. and Chattopadhyay, S. (2020) Superhydrophobic Surfaces: Insights from Theory and Experiment. The Journal of Physical Chemistry B, 124, 1323-1360.
https://doi.org/10.1021/acs.jpcb.9b08567
[24]  Nandakumar Chandran, K., Naveen, P.T., Abhilash, R. and Kumar Ranjith, S. (2021) Theoretical Modelling of Droplet Extension on Hydrophobic Surfaces. International Journal of Computational Fluid Dynamics, 35, 534-548.
https://doi.org/10.1080/10618562.2021.1998464
[25]  Landel, J.R., Peaudecerf, F.J., Temprano-Coleto, F., Gibou, F., Goldstein, R.E. and Luzzatto-Fegiz, P. (2020) A Theory for the Slip and Drag of Superhydrophobic Surfaces with Surfactant. Journal of Fluid Mechanics, 883, A18.
https://doi.org/10.1017/jfm.2019.857
[26]  Razavi, S.M.R., Oh, J., Sett, S., Feng, L., Yan, X., Hoque, M.J., et al. (2017) Superhydrophobic Surfaces Made from Naturally Derived Hydrophobic Materials. ACS Sustainable Chemistry & Engineering, 5, 11362-11370.
https://doi.org/10.1021/acssuschemeng.7b02424
[27]  Young, T. (1805) III. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87.
https://doi.org/10.1098/rstl.1805.0005
[28]  Onda, T. (2022) Theoretical Investigation of Wenzel and Cassie Wetting States on Porous Films and Fiber Meshes. Langmuir, 38, 13744-13752.
https://doi.org/10.1021/acs.langmuir.2c01847
[29]  Li, H., Feng, X. and Zhang, K. (2021) Study of the Classical Cassie Theory and Wenzel Theory Used in Nanoscale. Journal of Bionic Engineering, 18, 398-408.
https://doi.org/10.1007/s42235-021-0029-8
[30]  Kim, D. and Ryu, S. (2020) How and When the Cassie-Baxter Droplet Starts to Slide on Textured Surfaces. Langmuir, 36, 14031-14038.
https://doi.org/10.1021/acs.langmuir.0c02614
[31]  Marmur, A. (2021) Surface Tension of an Ideal Solid: What Does It Mean? Current Opinion in Colloid & Interface Science, 51, Article 101388.
https://doi.org/10.1016/j.cocis.2020.09.001
[32]  Yu, S., Guo, Z. and Liu, W. (2015) Biomimetic Transparent and Superhydrophobic Coatings: From Nature and Beyond Nature. Chemical Communications, 51, 1775-1794.
https://doi.org/10.1039/c4cc06868h
[33]  Feng, J., Xin, J., Feng, Q., Liu, Z., Wang, D., Ma, D., et al. (2023) Facile Fabrication of a Low-Cost, Room-Temperature Curable Superhydrophobic Coating with Excellent Stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 668, Article 131477.
https://doi.org/10.1016/j.colsurfa.2023.131477
[34]  Han, Z., Yuan, J., Tian, P., Liu, B., Tan, J. and Zhang, Q. (2023) Preparation of Highly Transparent and Wear-Resistant Sio2 Coating by Alkali/Acid Dual Catalyzed Sol-Gel Method. Journal of Materials Research, 38, 3316-3323.
https://doi.org/10.1557/s43578-023-01062-1
[35]  Jing, X., Xia, Y., Chen, F., Yang, C., Yang, Z. and Jaffery, S.H.I. (2022) Preparation of Superhydrophobic Glass Surface with High Adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, Article 127861.
https://doi.org/10.1016/j.colsurfa.2021.127861
[36]  Liu, P., Bai, X., Xing, W., Zhang, Y., Chen, N., Zhang, Y., et al. (2021) Translucent and Superhydrophobic Glass for Self-Cleaning and Acid Rain-Restraining. Materials Chemistry and Physics, 259, Article 124049.
https://doi.org/10.1016/j.matchemphys.2020.124049
[37]  赵高扬, 郅晓, 常慧丽. 玻璃表面超疏水性薄膜制备[J]. 功能材料, 2007, 38(6): 1034-1036.
[38]  王薇, 周忠华, 脱永峰, 等. 耐磨透明超疏水薄膜的制备及工艺研究[J]. 厦门大学学报(自然科学版), 2014, 53(5): 718-725.
[39]  胡昌义, 李靖华. 化学气相沉积技术与材料制备[J]. 稀有金属, 2001, 25(5): 364-368.
[40]  Zheng, J., Yang, J., Cao, W., Huang, Y., Zhou, Z. and Huang, Y. (2022) Fabrication of Transparent Wear-Resistant Superhydrophobic Sio2 Film via Phase Separation and Chemical Vapor Deposition Methods. Ceramics International, 48, 32143-32151.
https://doi.org/10.1016/j.ceramint.2022.07.154
[41]  Kalmoni, J.J., Heale, F.L., Blackman, C.S., Parkin, I.P. and Carmalt, C.J. (2023) A Single-Step Route to Robust and Fluorine-Free Superhydrophobic Coatings via Aerosol-Assisted Chemical Vapor Deposition. Langmuir, 39, 7731-7740.
https://doi.org/10.1021/acs.langmuir.3c00554
[42]  Zhang, F., Shi, Z., Jiang, Y., Xu, C., Wu, Z., Wang, Y., et al. (2017) Fabrication of Transparent Superhydrophobic Glass with Fibered-Silica Network. Applied Surface Science, 407, 526-531.
https://doi.org/10.1016/j.apsusc.2017.02.207
[43]  Pratiwi, N., Zulhadjri, Arief, S. and Wellia, D.V. (2020) A Facile Preparation of Transparent Ultrahydrophobic Glass via Tio2/Octadecyltrichlorosilane (ODTS) Coatings for Self‐Cleaning Material. ChemistrySelect, 5, 1450-1454.
https://doi.org/10.1002/slct.201904153
[44]  Zhao, S., Zhao, J., Wen, M., Yao, M., Wang, F., Huang, F., et al. (2018) Sequentially Reinforced Additive Coating for Transparent and Durable Superhydrophobic Glass. Langmuir, 34, 11316-11324.
https://doi.org/10.1021/acs.langmuir.8b01960
[45]  Liu, X., Wang, Y., Chen, Z., Ben, K. and Guan, Z. (2016) A Self-Modification Approach toward Transparent Superhydrophobic Glass for Rainproofing and Superhydrophobic Fiberglass Mesh for Oil-Water Separation. Applied Surface Science, 360, 789-797.
https://doi.org/10.1016/j.apsusc.2015.11.069
[46]  刘善堂. 扫描探针加工和自组装技术相结合的研究进展-表面图形可控的功能纳米结构的制备[J]. 武汉工程大学学报, 2007, 29(4): 1-4.
[47]  Maoz, R., Burshtain, D., Cohen, H., Nelson, P., Berson, J., Yoffe, A., et al. (2016) Site‐Targeted Interfacial Solid‐Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids. Angewandte Chemie International Edition, 55, 12366-12371.
https://doi.org/10.1002/anie.201604973
[48]  徐国华, HigashitaniKo. OTS自组装单分子膜在玻璃表面形成过程的AFM研究[J]. 高等学校化学学报, 2000, 21(8): 1257-1260.
[49]  曹耿, 潘美英, 钟锐, 等. 普通硅酸盐玻璃表面的疏水改性及其微纳结构表征[J]. 四川大学学报, 2014, 51(4): 804-808.
[50]  王华林, 史铁均, 杨善中, 等. 聚合物/层状硅酸盐有机无机纳米复合材料制备与性能研究进展[J]. 高分子材料科学与工程, 2005, 21(6): 36-44.
[51]  Wang, D., Zhang, Z., Li, Y. and Xu, C. (2014) Highly Transparent and Durable Superhydrophobic Hybrid Nanoporous Coatings Fabricated from Polysiloxane. ACS Applied Materials & Interfaces, 6, 10014-10021.
https://doi.org/10.1021/am405884x
[52]  Park, E.J., Sim, J.K., Jeong, M., Seo, H.O. and Kim, Y.D. (2013) Transparent and Superhydrophobic Films Prepared with Polydimethylsiloxane-Coated Silica Nanoparticles. RSC Advances, 3, 12571-12576.
https://doi.org/10.1039/c3ra42402b
[53]  Seo, K., Kim, M., Seok, S. and Kim, D.H. (2016) Transparent Superhydrophobic Surface by Silicone Oil Combustion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 110-118.
https://doi.org/10.1016/j.colsurfa.2015.12.022
[54]  Liu, Y., Liu, H., Feng, Y., Liu, Z., Hu, H., Yu, B., et al. (2016) A Nanotubular Coating with Both High Transparency and Healable Superhydrophobic Self-Cleaning Properties. RSC Advances, 6, 21362-21366.
https://doi.org/10.1039/c5ra26977f
[55]  Yokoi, N., Manabe, K., Tenjimbayashi, M. and Shiratori, S. (2015) Optically Transparent Superhydrophobic Surfaces with Enhanced Mechanical Abrasion Resistance Enabled by Mesh Structure. ACS Applied Materials & Interfaces, 7, 4809-4816.
https://doi.org/10.1021/am508726k
[56]  Her, E.K., Ko, T., Shin, B., Roh, H., Dai, W., Seong, W.K., et al. (2013) Superhydrophobic Transparent Surface of Nanostructured Poly(Methyl Methacrylate) Enhanced by a Hydrolysis Reaction. Plasma Processes and Polymers, 10, 481-488.
https://doi.org/10.1002/ppap.201200131
[57]  Fresnais, J., Chapel, J.P. and Poncin-Epaillard, F. (2006) Synthesis of Transparent Superhydrophobic Polyethylene Surfaces. Surface and Coatings Technology, 200, 5296-5305.
https://doi.org/10.1016/j.surfcoat.2005.06.022
[58]  Teshima, K., Sugimura, H., Inoue, Y., Takai, O. and Takano, A. (2005) Transparent Ultra Water-Repellent Poly(Ethylene Terephthalate) Substrates Fabricated by Oxygen Plasma Treatment and Subsequent Hydrophobic Coating. Applied Surface Science, 244, 619-622.
https://doi.org/10.1016/j.apsusc.2004.10.143
[59]  Palumbo, F., Di Mundo, R., Cappelluti, D. and d’Agostino, R. (2011) Superhydrophobic and Superhydrophilic Polycarbonate by Tailoring Chemistry and Nano‐Texture with Plasma Processing. Plasma Processes and Polymers, 8, 118-126.
https://doi.org/10.1002/ppap.201000098
[60]  Wang, G., Liang, W., Wang, B., Zhang, Y., Li, J., Shi, L., et al. (2013) Conductive and Transparent Superhydrophobic Films on Various Substrates by in Situ Deposition. Applied Physics Letters, 102, Article 203703.
https://doi.org/10.1063/1.4807472
[61]  Kim, H., Sohn, S. and Ahn, J.S. (2013) Transparent and Super-Hydrophobic Properties of PTFE Films Coated on Glass Substrate Using RF-Magnetron Sputtering and Cat-CVD Methods. Surface and Coatings Technology, 228, S389-S392.
https://doi.org/10.1016/j.surfcoat.2012.05.085

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133