全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内置式同步电机自适应电流矢量角跟踪最大转矩电流比控制方法
Adaptive Current Vector Angle Tracking MTPA Control Method of Interior PMSM

DOI: 10.12677/dsc.2025.142012, PP. 106-115

Keywords: 同步电机,自适应,电感,最大转矩电流比控制
PMSM
, Adaptive, Inductance, MTPA Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对同步电机动态负载过程中电感参数非线性变化的问题,本文提出一种用于同步电机最大转矩电流比有效控制的自寻优方法。首先,在理论最优点附近设计了电流矢量角差值模型,用于在前向回路中对角度进行补偿。其次,考虑到动态过程中直交轴电感的非线性变化,在不考虑剩磁变化的条件下,进一步设计了等效参数模型,并给出了控制规则,旨在实时控制工作点保持在最优工作点附近,最后文中给出了解析仿真验证,证明了设计方法的有效性。
Aiming at the problem of non-linear variation of inductance parameters during dynamic loading of PMSM, a self-optimization method is developed for the effective control of MTPA Control of PMSM in this paper. First, the current angle difference is designed to compensate for the forward loop. Secondly, considering the non-linear variation of orthogonal axis inductance in dynamic processes, an equivalent model is further designed without considering the variation of remanent magnetism, and the relative law is given, aiming to maintain real-time control of the working point near the optimal working point. Finally, the analytical simulation verification is given in the paper to prove the effectiveness of the design method.

References

[1]  Li, S., Han, D. and Sarlioglu, B. (2017) Modeling of Interior Permanent Magnet Machine Considering Saturation, Cross Coupling, Spatial Harmonics, and Temperature Effects. IEEE Transactions on Transportation Electrification, 3, 682-693.
https://doi.org/10.1109/tte.2017.2679212
[2]  Khayamy, M. and Chaoui, H. (2018) Current Sensorless MTPA Operation of Interior PMSM Drives for Vehicular Applications. IEEE Transactions on Vehicular Technology, 67, 6872-6881.
https://doi.org/10.1109/tvt.2018.2823538
[3]  Han, Z., Liu, J., Yang, W., Pinhal, D.B., Reiland, N. and Gerling, D. (2020) Improved Online Maximum-Torque-Per-Ampere Algorithm for Speed Controlled Interior Permanent Magnet Synchronous Machine. IEEE Transactions on Industrial Electronics, 67, 3398-3408.
https://doi.org/10.1109/tie.2019.2918471
[4]  Sun, J., Lin, C., Xing, J. and Jiang, X. (2019) Online MTPA Trajectory Tracking of IPMSM Based on a Novel Torque Control Strategy. Energies, 12, Article 3261.
https://doi.org/10.3390/en12173261
[5]  Liu, Q. and Hameyer, K. (2017) High-Performance Adaptive Torque Control for an IPMSM with Real-Time MTPA Operation. IEEE Transactions on Energy Conversion, 32, 571-581.
https://doi.org/10.1109/tec.2016.2633302
[6]  Lin, F., Chen, S., Liu, Y. and Chen, S. (2018) A Power Perturbation-Based MTPA Control with Disturbance Torque Observer for IPMSM Drive System. Transactions of the Institute of Measurement and Control, 40, 3179-3188.
https://doi.org/10.1177/0142331217746823
[7]  Guo, Q., Zhang, C., Li, L., Zhang, J. and Wang, M. (2016) Maximum Efficiency per Torque Control of Permanent-Magnet Synchronous Machines. Applied Sciences, 6, Article 425.
https://doi.org/10.3390/app6120425
[8]  Sun, T., Koc, M. and Wang, J. (2018) MTPA Control of IPMSM Drives Based on Virtual Signal Injection Considering Machine Parameter Variations. IEEE Transactions on Industrial Electronics, 65, 6089-6098.
https://doi.org/10.1109/tie.2017.2784409
[9]  Consoli, A., Scarcella, G., Scelba, G. and Testa, A. (2010) Steady-State and Transient Operation of Ipmsms under Maximum-Torque-Per-Ampere Control. IEEE Transactions on Industry Applications, 46, 121-129.
https://doi.org/10.1109/tia.2009.2036665

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133