|
功能性纳米水凝胶治疗糖尿病慢性难愈性创面的研究进展
|
Abstract:
糖尿病是全球高发的代谢性疾病。糖尿病慢性难愈性创面作为糖尿病最常见的并发症,具有发病率高、愈合时间长、感染风险高、治疗困难的特点。目前针对糖尿病慢性难愈性创面的敷料有许多,水凝胶作为一种新型材料,具有特殊的三维交联网络结构以及良好的吸水性、透气性、生物相容性,在药物搭载及药物控释方面优势明显,被广泛应用于糖尿病慢性难愈性创面的治疗。纳米粒子(NP)是纳米结构的基本组成部分,具有独特的尺寸和特性,也可用于药物负载并提供持续的药物输送,促进创面愈合。为满足临床治疗糖尿病慢性创面的需求,近年来许多研究人员将水凝胶与纳米颗粒相结合形成纳米水凝胶用于治疗糖尿病慢性创面。将纳米粒子和水凝胶结构组合,形成具有单个成分所没有的独特性质的先进材料,使其具有多种生物活性功能,以匹配伤口愈合过程中不同阶段的功能要求,从而更有效地促进慢性伤口的修复。本文基于糖尿病创面难愈合的因素、水凝胶敷料和纳米粒子,以及功能性纳米水凝胶敷料治疗糖尿病慢性创面的进展作一综述,为临床治疗糖尿病慢性创面寻找高效、安全的新策略提供依据。
Diabetes is a metabolic disease that is highly prevalent worldwide. As the most common complication of diabetes, chronic and difficult-to-healing wounds are characterized by high incidence, long healing time, high risk of infection and difficulty in treatment. Currently, there are many dressings for chronic and difficult-to-heal wounds in diabetes. As a new material, hydrogel has a special three-dimensional cross-linking network structure and good water absorption, breathability, and biocompatibility. It is used in drug delivery and drug control. It has obvious advantages in terms of release and is widely used in the treatment of chronic difficult-to-heal wounds in diabetes. Nanoparticles (NPs) are fundamental components of nanostructures, with unique sizes and properties, and can also be used for drug loading and provide continuous drug delivery, promoting wound healing. To meet the clinical needs of chronic wounds in diabetes, many researchers have combined hydrogels with nanoparticles to form nanohydrogels for the treatment of chronic wounds in diabetes. Combining nanoparticles and hydrogel structures to form advanced materials with unique properties that a single component does not have, giving them multiple biologically active functions to match the functional requirements of different stages of the wound healing process, thereby more effectively promoting chronicity repair of wounds. This article provides a review on the factors that make it difficult to heal diabetic wounds, the progress of hydrogel dressings, nanoparticles and functional nanohydrogel dressings in the treatment of chronic diabetic wounds, providing a basis for finding efficient and safe new strategies for clinical treatment of chronic diabetic wounds.
[1] | Wang, Q., Qiu, W., Li, M., Li, N., Li, X., Qin, X., et al. (2022) Multifunctional Hydrogel Platform for Biofilm Scavenging and O2 Generating with Photothermal Effect on Diabetic Chronic Wound Healing. Journal of Colloid and Interface Science, 617, 542-556. https://doi.org/10.1016/j.jcis.2022.03.040 |
[2] | 国蓉, 李肖珏, 陈燕燕. 糖化血红蛋白在糖尿病筛查和诊断中的意义[J]. 海军军医大学学报, 2023, 44(4): 480-485. |
[3] | Shaw, J.E., Sicree, R.A. and Zimmet, P.Z. (2010) Global Estimates of the Prevalence of Diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87, 4-14. https://doi.org/10.1016/j.diabres.2009.10.007 |
[4] | Dal Canto, E., Ceriello, A., Rydén, L., Ferrini, M., Hansen, T.B., Schnell, O., et al. (2019) Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. European Journal of Preventive Cardiology, 26, 25-32. https://doi.org/10.1177/2047487319878371 |
[5] | Stoekenbroek, R.M., Lokin, J.L.C., Nielen, M.M., Stroes, E.S.G. and Koelemay, M.J.W. (2017) How Common Are Foot Problems among Individuals with Diabetes? Diabetic Foot Ulcers in the Dutch Population. Diabetologia, 60, 1271-1275. https://doi.org/10.1007/s00125-017-4274-7 |
[6] | Callahan, D., Keeley, J., Alipour, H., DeVirgilio, C., Kaji, A., Plurad, D., et al. (2016) Predictors of Severity in Diabetic Foot Infections. Annals of Vascular Surgery, 33, 103-108. https://doi.org/10.1016/j.avsg.2016.01.003 |
[7] | Skórkowska-Telichowska, K., Czemplik, M., Kulma, A. and Szopa, J. (2013) The Local Treatment and Available Dressings Designed for Chronic Wounds. Journal of the American Academy of Dermatology, 68, e117-e126. https://doi.org/10.1016/j.jaad.2011.06.028 |
[8] | 李奕璇, 江旭, 秦梓通, 等. 抗炎抗菌水凝胶应用于糖尿病慢性伤口的研究进展与展望[J]. 西安交通大学学报(医学版), 2022, 43(6): 943-951. |
[9] | Firlar, I., Altunbek, M., McCarthy, C., Ramalingam, M. and Camci-Unal, G. (2022) Functional Hydrogels for Treatment of Chronic Wounds. Gels, 8, Article 127. https://doi.org/10.3390/gels8020127 |
[10] | Li, Y., Fu, R., Duan, Z., Zhu, C. and Fan, D. (2022) Artificial Nonenzymatic Antioxidant Mxene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS Nano, 16, 7486-7502. https://doi.org/10.1021/acsnano.1c10575 |
[11] | 胡敬龙, 李孟芸, 李丹茜, 等. 功能性水凝胶敷料促进糖尿病创面愈合研究进展[J]. 中国实用内科杂志, 2022, 42(8): 683-687. |
[12] | Hu, J., Chen, S., Yang, Y., Li, L., Cheng, X., Cheng, Y., et al. (2022) A Smart Hydrogel with Anti‐Biofilm and Anti‐Virulence Activities to Treat pseudomonas Aeruginosa Infections. Advanced Healthcare Materials, 11, Article 2200299. https://doi.org/10.1002/adhm.202200299 |
[13] | Sun, Z., Song, C., Wang, C., Hu, Y. and Wu, J. (2020) Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Molecular Pharmaceutics, 17, 373-391. https://doi.org/10.1021/acs.molpharmaceut.9b01020 |
[14] | Qi, L., Zhang, C., Wang, B., Yin, J. and Yan, S. (2022) Progress in Hydrogels for Skin Wound Repair. Macromolecular Bioscience, 22, e2100475. https://doi.org/10.1002/mabi.202100475 |
[15] | Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J. and Loh, X.J. (2015) Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2, Article 1400010. https://doi.org/10.1002/advs.201400010 |
[16] | Gupta, K.C., Haider, A., Choi, Y. and Kang, I. (2014) Nanofibrous Scaffolds in Biomedical Applications. Biomaterials Research, 18, Article 5. https://doi.org/10.1186/2055-7124-18-5 |
[17] | Li, J., Zhang, P., Zhou, M., Liu, C., Huang, Y. and Li, L. (2022) Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS Nano, 16, 6064-6079. https://doi.org/10.1021/acsnano.1c11562 |
[18] | Liu, Y., Li, C., Feng, Z., Han, B., Yu, D. and Wang, K. (2022) Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules, 12, Article 1727. https://doi.org/10.3390/biom12121727 |
[19] | Yusuf Aliyu, A. and Adeleke, O.A. (2023) Nanofibrous Scaffolds for Diabetic Wound Healing. Pharmaceutics, 15, Article 986. https://doi.org/10.3390/pharmaceutics15030986 |
[20] | 周应娟. 纳米复合物介导功能化水凝胶体系在糖尿病创面再生修复中的应用研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2024. |
[21] | Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) ROS-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. https://doi.org/10.1016/j.biomaterials.2020.120286 |
[22] | Long, L., Liu, W., Hu, C., Yang, L. and Wang, Y. (2022) Construction of Multifunctional Wound Dressings with Their Application in Chronic Wound Treatment. Biomaterials Science, 10, 4058-4076. https://doi.org/10.1039/d2bm00620k |
[23] | Tong, Z., Dong, L., Zhou, L., Tao, R. and Ni, L. (2010) Nisin Inhibits Dental Caries-Associated Microorganism in Vitro. Peptides, 31, 2003-2008. https://doi.org/10.1016/j.peptides.2010.07.016 |
[24] | Zhang, J., Zhu, Y., Zhang, Y., Lin, W., Ke, J., Liu, J., et al. (2021) A Balanced Charged Hydrogel with Anti-Biofouling and Antioxidant Properties for Treatment of Irradiation-Induced Skin Injury. Materials Science and Engineering: C, 131, Article 112538. https://doi.org/10.1016/j.msec.2021.112538 |
[25] | Wang, S., Xiang, J., Sun, Y., Wang, H., Du, X., Cheng, X., et al. (2021) Skin-Inspired Nanofibrillated Cellulose-Reinforced Hydrogels with High Mechanical Strength, Long-Term Antibacterial, and Self-Recovery Ability for Wearable Strain/Pressure Sensors. Carbohydrate Polymers, 261, Article 117894. https://doi.org/10.1016/j.carbpol.2021.117894 |
[26] | Khaliq, T., Sohail, M., Minhas, M.U., Ahmed Shah, S., Jabeen, N., Khan, S., et al. (2022) Self-Crosslinked Chitosan/κ-Carrageenan-Based Biomimetic Membranes to Combat Diabetic Burn Wound Infections. International Journal of Biological Macromolecules, 197, 157-168. https://doi.org/10.1016/j.ijbiomac.2021.12.100 |
[27] | Tu, C., Lu, H., Zhou, T., Zhang, W., Deng, L., Cao, W., et al. (2022) Promoting the Healing of Infected Diabetic Wound by an Anti-Bacterial and Nano-Enzyme-Containing Hydrogel with Inflammation-Suppressing, Ros-Scavenging, Oxygen and Nitric Oxide-Generating Properties. Biomaterials, 286, Article 121597. https://doi.org/10.1016/j.biomaterials.2022.121597 |
[28] | Zhu, Y., Hoshi, R., Chen, S., Yi, J., Duan, C., Galiano, R.D., et al. (2016) Sustained Release of Stromal Cell Derived Factor-1 from an Antioxidant Thermoresponsive Hydrogel Enhances Dermal Wound Healing in Diabetes. Journal of Controlled Release, 238, 114-122. https://doi.org/10.1016/j.jconrel.2016.07.043 |
[29] | Veith, A.P., Henderson, K., Spencer, A., Sligar, A.D. and Baker, A.B. (2019) Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Advanced Drug Delivery Reviews, 146, 97-125. https://doi.org/10.1016/j.addr.2018.09.010 |
[30] | Wang, G.L., Jiang, B.H., Rue, E.A. and Semenza, G.L. (1995) Hypoxia-Inducible Factor 1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences, 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510 |
[31] | Cam, M.E., Ertas, B., Alenezi, H., Hazar-Yavuz, A.N., Cesur, S., Ozcan, G.S., et al. (2021) Accelerated Diabetic Wound Healing by Topical Application of Combination Oral Antidiabetic Agents-Loaded Nanofibrous Scaffolds: An in Vitro and in Vivo Evaluation Study. Materials Science and Engineering: C, 119, Article 111586. https://doi.org/10.1016/j.msec.2020.111586 |
[32] | Wu, J., Xiao, Z., Chen, A., He, H., He, C., Shuai, X., et al. (2018) Sulfated Zwitterionic Poly(Sulfobetaine Methacrylate) Hydrogels Promote Complete Skin Regeneration. Acta Biomaterialia, 71, 293-305. https://doi.org/10.1016/j.actbio.2018.02.034 |
[33] | 程林飞. 促糖尿病创面愈合的多功能复合水凝胶的制备和研究[D]: [博士学位论文]. 淮南: 安徽理工大学, 2024. |
[34] | Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H. and Bucio, E. (2021) Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 7, Article 182. https://doi.org/10.3390/gels7040182 |
[35] | Ho, T., Chang, C., Chan, H., Chung, T., Shu, C., Chuang, K., et al. (2022) Hydrogels: Properties and Applications in Biomedicine. Molecules, 27, Article 2902. https://doi.org/10.3390/molecules27092902 |
[36] | Bordbar-Khiabani, A. and Gasik, M. (2022) Smart Hydrogels for Advanced Drug Delivery Systems. International Journal of Molecular Sciences, 23, Article 3665. https://doi.org/10.3390/ijms23073665 |
[37] | Haidari, H., Kopecki, Z., Sutton, A.T., Garg, S., Cowin, A.J. and Vasilev, K. (2021) pH-Responsive “Smart” Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds. Antibiotics, 10, Article 49. https://doi.org/10.3390/antibiotics10010049 |
[38] | Younis, M.A., Tawfeek, H.M., Abdellatif, A.A.H., Abdel-Aleem, J.A. and Harashima, H. (2022) Clinical Translation of Nanomedicines: Challenges, Opportunities, and Keys. Advanced Drug Delivery Reviews, 181, Article 114083. https://doi.org/10.1016/j.addr.2021.114083 |
[39] | Kalashnikova, I., Das, S. and Seal, S. (2015) Nanomaterials for Wound Healing: Scope and Advancement. Nanomedicine, 10, 2593-2612. https://doi.org/10.2217/nnm.15.82 |