|
二甲双胍对糖尿病患者黄斑区视网膜厚度的影响
|
Abstract:
目的:研究二甲双胍对糖尿病患者黄斑区视网膜厚度的影响。方法:回顾性队列研究。选择2024年10月至2024年12月于青岛大学附属医院内分泌科和眼科就诊的无视网膜病变的2型糖尿病患者32人(63眼),根据所使用降糖方案是否含有二甲双胍分为两组:二甲双胍组15人(30眼)及非二甲双胍组17人(33眼)。使用TowardPi YG-100K PRO OCT仪测量两组患者黄斑中心凹(距中心小凹直径1000 μm)及黄斑上方、下方、鼻侧、颞侧(距离中心小凹直径3000 μm)区域的视网膜厚度及神经节细胞复合体(GCC)厚度。统计学分析两组患者黄斑区视网膜厚度及GCC厚度是否存在统计学差异。结果:两组基线资料(性别、年龄、糖尿病病程)无统计学差异(P > 0.05)。二甲双胍组患者黄斑中心凹、上方、下方、鼻侧及颞侧视网膜厚度平均值高于非二甲双胍组,两组之间差异均有统计学意义(t中 = 4.57, P < 0.01; U上 = 210.50, P < 0.01; t下 = 3.42, P < 0.01; t鼻 = 5.57, P < 0.01; t颞 = 5.79, P < 0.01)。二甲双胍组较非二甲双胍组二甲双胍组患者患者黄斑中心凹、上方、下方及鼻侧视网膜GCC厚度平均值高于非二甲双胍组,两组之间差异均有统计学意义(U中 = 122.50, P = 0.035; t上 = 2.09, P = 0.045; t下 = 2.04, P = 0.049; U鼻 = 344, P = 0.044)。二甲双胍组患者颞侧视网膜GCC厚度平均值高于非二甲双胍组,差异无统计学意义(t颞 = 1.81, P = 0.078)。结论:二甲双胍可能对糖尿病患者黄斑区视网膜厚度的减少具有抑制作用。
Objective: To investigate the effects of metformin on macular retinal thickness in patients with diabetes mellitus. Methods: A retrospective cohort study included 32 type 2 diabetes patients (63 eyes) without retinopathy from Qingdao University Affiliated Hospital (October-December 2024), divided into metformin (15 patients, 30 eyes) and non-metformin groups (17 patients, 33 eyes); macular retinal thickness and ganglion cell complex (GCC) thickness were measured at central fovea (1000 μm from the central recess) and superior/inferior/nasal/temporal perifoveal regions (3000 μm from the central recess) using TowardPi YG-100K PRO OCT. Statistical analysis of whether the retinal thickness and GCC thickness in the macular area were different between the two groups. Results: There was no statistical difference in baseline data (gender, age, diabetes duration) between the two groups (P > 0.05). The metformin group exhibited higher mean retinal thickness in the central fovea, superior, inferior, nasal, and temporal regions compared to the non-metformin group, with statistically significant differences observed between the two groups (central fovea: t = 4.57, P < 0.01; superior: U = 210.50, P < 0.01; inferior: t = 3.42, P < 0.01; nasal: t = 5.57, P < 0.01; temporal: t = 5.79, P < 0.01). The metformin group also demonstrated higher mean GCC thickness in the central fovea, superior, inferior, and
[1] | Fung, T.H., Patel, B., Wilmot, E.G. and Amoaku, W.M. (2022) Diabetic Retinopathy for the Non-Ophthalmologist. Clinical Medicine, 22, 112-116. https://doi.org/10.7861/clinmed.2021-0792 |
[2] | 邵毅, 周琼. 糖尿病视网膜病变诊治规范——2018年美国眼科学会临床指南解读[J]. 眼科新进展, 2019, 39(6): 501-506. |
[3] | Kim, K., Kim, E.S. and Yu, S. (2018) Longitudinal Relationship between Retinal Diabetic Neurodegeneration and Progression of Diabetic Retinopathy in Patients with Type 2 Diabetes. American Journal of Ophthalmology, 196, 165-172. https://doi.org/10.1016/j.ajo.2018.08.053 |
[4] | Montesano, G., Ometto, G., Higgins, B.E., Das, R., Graham, K.W., Chakravarthy, U., et al. (2021) Evidence for Structural and Functional Damage of the Inner Retina in Diabetes with No Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 62, Article No. 35. https://doi.org/10.1167/iovs.62.3.35 |
[5] | Campbell, J.M., Stephenson, M.D., de Courten, B., Chapman, I., Bellman, S.M. and Aromataris, E. (2018) Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 65, 1225-1236. https://doi.org/10.3233/jad-180263 |
[6] | Jiang, T., Yu, J., Zhu, X., Wang, H., Tan, M., Cao, L., et al. (2014) Acute Metformin Preconditioning Confers Neuroprotection against Focal Cerebral Ischaemia by Pre‐Activation of AMPK‐Dependent Autophagy. British Journal of Pharmacology, 171, 3146-3157. https://doi.org/10.1111/bph.12655 |
[7] | Lin, Y., Wang, K., Ma, C., Wang, X., Gong, Z., Zhang, R., et al. (2018) Evaluation of Metformin on Cognitive Improvement in Patients with Non-Dementia Vascular Cognitive Impairment and Abnormal Glucose Metabolism. Frontiers in Aging Neuroscience, 10, Article No. 227. https://doi.org/10.3389/fnagi.2018.00227 |
[8] | Palkovits, S., Hirnschall, N., Georgiev, S., Leisser, C. and Findl, O. (2020) Effect of Cataract Extraction on Retinal Sensitivity Measurements. Ophthalmic Research, 64, 10-14. https://doi.org/10.1159/000507450 |
[9] | Guo, L., Normando, E.M., Nizari, S., Lara, D. and Cordeiro, M.F. (2010) Tracking Longitudinal Retinal Changes in Experimental Ocular Hypertension Using the cSLO and Spectral Domain-OCT. Investigative Opthalmology & Visual Science, 51, 6504-6513. https://doi.org/10.1167/iovs.10-5551 |
[10] | Chauhan, B.C., Stevens, K.T., Levesque, J.M., Nuschke, A.C., Sharpe, G.P., O’Leary, N., et al. (2012) Longitudinal in Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice. PLOS ONE, 7, e40352. https://doi.org/10.1371/journal.pone.0040352 |
[11] | Tu, S., Li, K., Ding, X., Hu, D., Li, K. and Ge, J. (2019) Relationship between Intraocular Pressure and Retinal Nerve Fibre Thickness Loss in a Monkey Model of Chronic Ocular Hypertension. Eye, 33, 1833-1841. https://doi.org/10.1038/s41433-019-0484-1 |
[12] | D’Cruz, T.S., Weibley, B.N., Kimball, S.R. and Barber, A.J. (2012) Post-Translational Processing of Synaptophysin in the Rat Retina Is Disrupted by Diabetes. PLOS ONE, 7, e44711. https://doi.org/10.1371/journal.pone.0044711 |
[13] | Leung, C.K., Weinreb, R.N., Li, Z.W., Liu, S., Lindsey, J.D., Choi, N., et al. (2011) Long-Term in Vivo Imaging and Measurement of Dendritic Shrinkage of Retinal Ganglion Cells. Investigative Opthalmology & Visual Science, 52, 1539-1547. https://doi.org/10.1167/iovs.10-6012 |
[14] | Dimitropoulos, G. (2014) Cardiac Autonomic Neuropathy in Patients with Diabetes Mellitus. World Journal of Diabetes, 5, 17-39. https://doi.org/10.4239/wjd.v5.i1.17 |
[15] | Agashe, S. and Petak, S. (2018) Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist DeBakey Cardiovascular Journal, 14, 251-256. https://doi.org/10.14797/mdcj-14-4-251 |
[16] | Chhablani, J., Sharma, A., Goud, A., Peguda, H.K., Rao, H.L., Begum, V.U., et al. (2015) Neurodegeneration in Type 2 Diabetes: Evidence from Spectral-Domain Optical Coherence Tomography. Investigative Opthalmology & Visual Science, 56, 6333-6338. https://doi.org/10.1167/iovs.15-17334 |
[17] | Carpineto, P., Toto, L., Aloia, R., Ciciarelli, V., Borrelli, E., Vitacolonna, E., et al. (2016) Neuroretinal Alterations in the Early Stages of Diabetic Retinopathy in Patients with Type 2 Diabetes Mellitus. Eye, 30, 673-679. https://doi.org/10.1038/eye.2016.13 |
[18] | Gundogan, F.C., Akay, F., Uzun, S., Yolcu, U., Çağıltay, E. and Toyran, S. (2015) Early Neurodegeneration of the Inner Retinal Layers in Type 1 Diabetes Mellitus. Ophthalmologica, 235, 125-132. https://doi.org/10.1159/000442826 |
[19] | McAnany, J.J. and Park, J.C. (2018) Reduced Contrast Sensitivity Is Associated with Elevated Equivalent Intrinsic Noise in Type 2 Diabetics Who Have Mild or No Retinopathy. Investigative Opthalmology & Visual Science, 59, 2652-2658. https://doi.org/10.1167/iovs.18-24151 |
[20] | Stavrou, E.P. and Wood, J.M. (2003) Letter Contrast Sensitivity Changes in Early Diabetic Retinopathy. Clinical and Experimental Optometry, 86, 152-156. https://doi.org/10.1111/j.1444-0938.2003.tb03097.x |
[21] | Hellgren, K., Agardh, E. and Bengtsson, B. (2014) Progression of Early Retinal Dysfunction in Diabetes over Time: Results of a Long-Term Prospective Clinical Study. Diabetes, 63, 3104-3111. https://doi.org/10.2337/db13-1628 |
[22] | Lobefalo, L., Verrotti, A., Mastropasqua, L., Chiarelli, F., Morgese, G. and Gallenga, P.E. (1997) Flicker Perimetry in Diabetic Children without Retinopathy. Canadian Journal of Ophthalmology, 32, 324-328. |
[23] | Montesano, G., Gervasoni, A., Ferri, P., Allegrini, D., Migliavacca, L., De Cillà, S., et al. (2017) Structure-Function Relationship in Early Diabetic Retinopathy: A Spatial Correlation Analysis with OCT and Microperimetry. Eye, 31, 931-939. https://doi.org/10.1038/eye.2017.27 |
[24] | McAnany, J.J., Park, J.C., Liu, K., Liu, M., Chen, Y., Chau, F.Y., et al. (2019) Contrast Sensitivity Is Associated with Outer‐Retina Thickness in Early‐Stage Diabetic Retinopathy. Acta Ophthalmologica, 98, e224-e231. https://doi.org/10.1111/aos.14241 |
[25] | Kim, K.E. and Park, K.H. (2017) Macular Imaging by Optical Coherence Tomography in the Diagnosis and Management of Glaucoma. British Journal of Ophthalmology, 102, 718-724. https://doi.org/10.1136/bjophthalmol-2017-310869 |
[26] | Chan, N.C.Y. and Chan, C.K.M. (2017) The Use of Optical Coherence Tomography in Neuro-Ophthalmology. Current Opinion in Ophthalmology, 28, 552-557. https://doi.org/10.1097/icu.0000000000000418 |
[27] | Salehi, M.A., Nowroozi, A., Gouravani, M., Mohammadi, S. and Arevalo, J.F. (2022) Associations of Refractive Errors and Retinal Changes Measured by Optical Coherence Tomography: A Systematic Review and Meta-Analysis. Survey of Ophthalmology, 67, 591-607. https://doi.org/10.1016/j.survophthal.2021.07.007 |
[28] | Isop, L.M., Neculau, A.E., Necula, R.D., Kakucs, C., Moga, M.A. and Dima, L. (2023) Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals, 16, Article No. 1714. https://doi.org/10.3390/ph16121714 |
[29] | Rotermund, C., Machetanz, G. and Fitzgerald, J.C. (2018) The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Frontiers in Endocrinology, 9, Article No. 400. https://doi.org/10.3389/fendo.2018.00400 |
[30] | Vázquez-Manrique, R.P., Farina, F., Cambon, K., Dolores Sequedo, M., Parker, A.J., Millán, J.M., et al. (2015) AMPK Activation Protects from Neuronal Dysfunction and Vulnerability across Nematode, Cellular and Mouse Models of Huntington’s Disease. Human Molecular Genetics, 25, 1043-1058. https://doi.org/10.1093/hmg/ddv513 |
[31] | Amin, S.V., Khanna, S., Parvar, S.P., Shaw, L.T., Dao, D., Hariprasad, S.M., et al. (2022) Metformin and Retinal Diseases in Preclinical and Clinical Studies: Insights and Review of Literature. Experimental Biology and Medicine, 247, 317-329. https://doi.org/10.1177/15353702211069986 |
[32] | 李丽君. 二甲双胍在急性青光眼小鼠模型中的保护作用及机制研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023. |
[33] | Kim, A.J., Chang, J.Y., Shi, L., Chang, R.C., Ko, M.L. and Ko, G.Y. (2017) The Effects of Metformin on Obesity-Induced Dysfunctional Retinas. Investigative Opthalmology & Visual Science, 58, 106-118. https://doi.org/10.1167/iovs.16-20691 |
[34] | Nesper, P.L., Soetikno, B.T., Zhang, H.F. and Fawzi, A.A. (2017) OCT Angiography and Visible-Light OCT in Diabetic Retinopathy. Vision Research, 139, 191-203. https://doi.org/10.1016/j.visres.2017.05.006 |