|
麻醉期间允许性高碳酸血症对术后认知功能障碍的影响
|
Abstract:
术后认知功能障碍(POCD)是老年患者术后最常见的并发症之一,其会增加老年患者术后其他并发症发生率、延长住院时间、增加医疗费用和30天再入院率,影响患者预后。目前,药物与非药物手段预防术后认知功能障碍(POCD)的效果尚不确切,而允许性高碳酸血症作为一种肺保护性通气策略,对肺部、大脑及心脏均有一定程度的保护作用,其对术后认知功能的改善的作用也越来越被大家重视,本文将从允许性高碳酸血症对神经炎症反应、血脑屏障、脑灌注、脑氧代谢等多方面的作用进行综述,为允许性高碳酸血症对减少术后认知功能障碍的发生提供理论依据。
Postoperative cognitive dysfunction (POCD) is one of the most common postoperative complications in elderly patients. It will increase the incidence of other postoperative complications in elderly patients, prolong hospitalization time, increase medical expenses and 30-day readmission rate, and affect the prognosis of patients. At present, the effect of drug and non-drug methods on the prevention of postoperative cognitive dysfunction (POCD) is not clear. While permissive hypercapnia, as a lung protective ventilation strategy, has a certain degree of protective effect on the lungs, brain and heart, and its effect on the improvement of cognitive function in the postoperative time has been paid more and more attention. This article reviews the effects of permissive hypercapnia on neuroinflammatory response, blood-brain barrier, cerebral perfusion, cerebral oxygen metabolism and other aspects, and provides a theoretical basis for permissive hypercapnia to reduce the occurrence of postoperative cognitive dysfunction.
[1] | Weiser, T.G., Haynes, A.B., Molina, G., Lipsitz, S.R., Esquivel, M.M., Uribe-Leitz, T., et al. (2016) Size and Distribution of the Global Volume of Surgery in 2012. Bulletin of the World Health Organization, 94, 201-209. https://doi.org/10.2471/blt.15.159293 |
[2] | Etzioni, D.A., Liu, J.H., Maggard, M.A. and Ko, C.Y. (2003) The Aging Population and Its Impact on the Surgery Workforce. Annals of Surgery, 238, 170-177. https://doi.org/10.1097/01.sla.0000081085.98792.3d |
[3] | Zhao, Q., Wan, H., Pan, H. and Xu, Y. (2024) Postoperative Cognitive Dysfunction—Current Research Progress. Frontiers in Behavioral Neuroscience, 18, Article ID: 1328790. https://doi.org/10.3389/fnbeh.2024.1328790 |
[4] | Needham, M.J., Webb, C.E. and Bryden, D.C. (2017) Postoperative Cognitive Dysfunction and Dementia: What We Need to Know and Do. British Journal of Anaesthesia, 119, i115-i125. https://doi.org/10.1093/bja/aex354 |
[5] | Yang, X., Huang, X., Li, M., Jiang, Y. and Zhang, H. (2022) Identification of Individuals at Risk for Postoperative Cognitive Dysfunction (POCD). Therapeutic Advances in Neurological Disorders, 15. |
[6] | Travica, N., Lotfaliany, M., Marriott, A., Safavynia, S.A., Lane, M.M., Gray, L., et al. (2023) Peri-Operative Risk Factors Associated with Post-Operative Cognitive Dysfunction (POCD): An Umbrella Review of Meta-Analyses of Observational Studies. Journal of Clinical Medicine, 12, Article No. 1610. https://doi.org/10.3390/jcm12041610 |
[7] | Liu, Y., Yang, W., Xue, J., Chen, J., Liu, S., Zhang, S., et al. (2023) Neuroinflammation: The Central Enabler of Postoperative Cognitive Dysfunction. Biomedicine & Pharmacotherapy, 167, Article ID: 115582. https://doi.org/10.1016/j.biopha.2023.115582 |
[8] | Wang, C., Chen, W., Zhang, Y., Lin, S. and He, H. (2021) Update on the Mechanism and Treatment of Sevoflurane-Induced Postoperative Cognitive Dysfunction. Frontiers in Aging Neuroscience, 13, Article ID: 702231. https://doi.org/10.3389/fnagi.2021.702231 |
[9] | Alam, A., Hana, Z., Jin, Z., Suen, K.C. and Ma, D. (2018) Surgery, Neuroinflammation and Cognitive Impairment. EBioMedicine, 37, 547-556. https://doi.org/10.1016/j.ebiom.2018.10.021 |
[10] | Jin, H., Li, M., Jeong, E., Castro-Martinez, F. and Zuker, C.S. (2024) A Body-Brain Circuit That Regulates Body Inflammatory Responses. Nature, 630, 695-703. https://doi.org/10.1038/s41586-024-07469-y |
[11] | Ma, G., Chen, C., Jiang, H., Qiu, Y., Li, Y., Li, X., et al. (2017) Ribonuclease Attenuates Hepatic Ischemia Reperfusion Induced Cognitive Impairment through the Inhibition of Inflammatory Cytokines in Aged Mice. Biomedicine & Pharmacotherapy, 90, 62-68. https://doi.org/10.1016/j.biopha.2017.02.094 |
[12] | Leal, G., Comprido, D. and Duarte, C.B. (2014) BDNF-Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology, 76, 639-656. https://doi.org/10.1016/j.neuropharm.2013.04.005 |
[13] | Sierra, A., Beccari, S., Diaz-Aparicio, I., Encinas, J.M., Comeau, S. and Tremblay, M. (2014) Surveillance, Phagocytosis, and Inflammation: How Never-Resting Microglia Influence Adult Hippocampal Neurogenesis. Neural Plasticity, 2014, Article ID: 610343. https://doi.org/10.1155/2014/610343 |
[14] | Wang, B., Li, S., Cao, X., Dou, X., Li, J., Wang, L., et al. (2018) Blood-Brain Barrier Disruption Leads to Postoperative Cognitive Dysfunction. Current Neurovascular Research, 14, 359-367. https://doi.org/10.2174/1567202614666171009105825 |
[15] | Qiu, Y., Mo, C., Xu, S., Chen, L., Ye, W., Kang, Y., et al. (2023) Research Progress on Perioperative Blood-Brain Barrier Damage and Its Potential Mechanism. Frontiers in Cell and Developmental Biology, 11, Article ID: 1174043. https://doi.org/10.3389/fcell.2023.1174043 |
[16] | Safavynia, S.A. and Goldstein, P.A. (2019) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article No. 752. https://doi.org/10.3389/fpsyt.2018.00752 |
[17] | Taylor, J., Parker, M., Casey, C.P., Tanabe, S., Kunkel, D., Rivera, C., et al. (2022) Postoperative Delirium and Changes in the Blood-Brain Barrier, Neuroinflammation, and Cerebrospinal Fluid Lactate: A Prospective Cohort Study. British Journal of Anaesthesia, 129, 219-230. https://doi.org/10.1016/j.bja.2022.01.005 |
[18] | Dilmen, O.K., Meco, B.C., Evered, L.A. and Radtke, F.M. (2024) Postoperative Neurocognitive Disorders: A Clinical Guide. Journal of Clinical Anesthesia, 92, Article ID: 111320. https://doi.org/10.1016/j.jclinane.2023.111320 |
[19] | Lin, X., Chen, Y., Zhang, P., Chen, G., Zhou, Y. and Yu, X. (2020) The Potential Mechanism of Postoperative Cognitive Dysfunction in Older People. Experimental Gerontology, 130, Article ID: 110791. https://doi.org/10.1016/j.exger.2019.110791 |
[20] | Andersen, J.V. and Schousboe, A. (2022) Glial Glutamine Homeostasis in Health and Disease. Neurochemical Research, 48, 1100-1128. https://doi.org/10.1007/s11064-022-03771-1 |
[21] | He, L., Duan, X., Li, S., Zhang, R., Dai, X. and Lu, M. (2024) Unveiling the Role of Astrocytes in Postoperative Cognitive Dysfunction. Ageing Research Reviews, 95, Article ID: 102223. https://doi.org/10.1016/j.arr.2024.102223 |
[22] | Netto, M.B., de Oliveira Junior, A.N., Goldim, M., Mathias, K., Fileti, M.E., da Rosa, N., et al. (2018) Oxidative Stress and Mitochondrial Dysfunction Contributes to Postoperative Cognitive Dysfunction in Elderly Rats. Brain, Behavior, and Immunity, 73, 661-669. https://doi.org/10.1016/j.bbi.2018.07.016 |
[23] | Kong, H., Xu, L. and Wang, D. (2022) Perioperative Neurocognitive Disorders: A Narrative Review Focusing on Diagnosis, Prevention, and Treatment. CNS Neuroscience & Therapeutics, 28, 1147-1167. https://doi.org/10.1111/cns.13873 |
[24] | Zeng, K., Long, J., Li, Y. and Hu, J. (2023) Preventing Postoperative Cognitive Dysfunction Using Anesthetic Drugs in Elderly Patients Undergoing Noncardiac Surgery: A Systematic Review and Meta-Analysis. International Journal of Surgery, 109, 21-31. https://doi.org/10.1097/js9.0000000000000001 |
[25] | Deng, M., Wang, Y. and Zheng, B. (2024) Advances in the Use of Dexmedetomidine for Postoperative Cognitive Dysfunction. Anesthesiology and Perioperative Science, 2, Article No. 38. https://doi.org/10.1007/s44254-024-00078-y |
[26] | Yang, Y., Zhao, X., Gao, L., Wang, Y. and Wang, J. (2020) Incidence and Associated Factors of Delirium after Orthopedic Surgery in Elderly Patients: A Systematic Review and Meta-Analysis. Aging Clinical and Experimental Research, 33, 1493-1506. https://doi.org/10.1007/s40520-020-01674-1 |
[27] | Curley, G.F., Laffey, J.G. and Kavanagh, B.P. (2013) Crosstalk Proposal: There Is Added Benefit to Providing Permissive Hypercapnia in the Treatment of Ards. The Journal of Physiology, 591, 2763-2765. https://doi.org/10.1113/jphysiol.2013.252601 |
[28] | Hickling, K.G., Henderson, S.J. and Jackson, R. (1990) Low Mortality Associated with Low Volume Pressure Limited Ventilation with Permissive Hypercapnia in Severe Adult Respiratory Distress Syndrome. Intensive Care Medicine, 16, 372-377. https://doi.org/10.1007/bf01735174 |
[29] | Contreras, M., Masterson, C. and Laffey, J.G. (2015) Permissive Hypercapnia. Current Opinion in Anaesthesiology, 28, 26-37. https://doi.org/10.1097/aco.0000000000000151 |
[30] | Xi, Y., Jia, X., Wei, X. and Zhou, Q. (2024) Progress on the Effects of Permissive Hypercapnia on the CNS during the Intraoperative Period: A Narrative Review. Cureus, 16, e68087. https://doi.org/10.7759/cureus.68087 |
[31] | Ahrens, E., Tartler, T.M., Suleiman, A., Wachtendorf, L.J., Ma, H., Chen, G., et al. (2023) Dose-Dependent Relationship between Intra-Procedural Hypoxaemia or Hypocapnia and Postoperative Delirium in Older Patients. British Journal of Anaesthesia, 130, e298-e306. https://doi.org/10.1016/j.bja.2022.08.032 |
[32] | Gao, W., Liu, D., Li, D. and Cui, G. (2015) Effect of Therapeutic Hypercapnia on Inflammatory Responses to One-Lung Ventilation in Lobectomy Patients. Anesthesiology, 122, 1235-1252. https://doi.org/10.1097/aln.0000000000000627 |
[33] | Zhu, L., Shi, H., Zhu, C., Liu, H., Su, Z. and Zhao, Y. (2020) Impact of Permissive Hypercapnia on Regional Cerebral Oxygen Saturation and Postoperative Cognitive Function in Patients Undergoing Cardiac Valve Replacement. Annals of Palliative Medicine, 9, 4066-4073. https://doi.org/10.21037/apm-20-2090 |
[34] | Wong, C., Churilov, L., Cowie, D., Tan, C.O., Hu, R., Tremewen, D., et al. (2020) Randomised Controlled Trial to Investigate the Relationship between Mild Hypercapnia and Cerebral Oxygen Saturation in Patients Undergoing Major Surgery. BMJ Open, 10, e029159. https://doi.org/10.1136/bmjopen-2019-029159 |
[35] | Cheng, Q., Li, L., Lin, D., Li, R., Yue, Y., Wei, H., et al. (2019) Effects of Acute Hypercapnia on Cognitive Function in Patients Undergoing Bronchoscope Intervention. Journal of Thoracic Disease, 11, 1065-1071. https://doi.org/10.21037/jtd.2018.12.15 |
[36] | Song, J., Shao, Y., Zhang, G., Fan, B., Tao, W., Liu, X., et al. (2024) Examining the Impact of Permissibility Hypercapnia on Postoperative Delirium among Elderly Patients Undergoing Thoracoscopic-Laparoscopic Esophagectomy: A Single-Center Investigative Study. Shock, 62, 319-326. https://doi.org/10.1097/shk.0000000000002400 |
[37] | Zhou, Q., Cao, B., Niu, L., Cui, X., Yu, H., Liu, J., et al. (2010) Effects of Permissive Hypercapnia on Transient Global Cerebral Ischemia-Reperfusion Injury in Rats. Anesthesiology, 112, 288-297. https://doi.org/10.1097/aln.0b013e3181ca8257 |
[38] | Yang, T., Velagapudi, R. and Terrando, N. (2020) Neuroinflammation after Surgery: From Mechanisms to Therapeutic Targets. Nature Immunology, 21, 1319-1326. https://doi.org/10.1038/s41590-020-00812-1 |
[39] | Ijland, M.M., Heunks, L.M. and van der Hoeven, J.G. (2010) Bench-to-Bedside Review: Hypercapnic Acidosis in Lung Injury—From “Permissive” to “Therapeutic”. Critical Care, 14, Article No. 137. https://doi.org/10.1186/cc9238 |
[40] | O’Toole, D., Hassett, P., Contreras, M., Higgins, B.D., McKeown, S.T.W., McAuley, D.F., et al. (2009) Hypercapnic Acidosis Attenuates Pulmonary Epithelial Wound Repair by an NF-B Dependent Mechanism. Thorax, 64, 976-982. https://doi.org/10.1136/thx.2008.110304 |
[41] | Morales-Quinteros, L., Camprubí-Rimblas, M., Bringué, J., Bos, L.D., Schultz, M.J. and Artigas, A. (2019) The Role of Hypercapnia in Acute Respiratory Failure. Intensive Care Medicine Experimental, 7, Article No. 39. https://doi.org/10.1186/s40635-019-0239-0 |
[42] | Gao, Q. and Hernandes, M.S. (2021) Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation, 44, 2143-2150. https://doi.org/10.1007/s10753-021-01501-3 |
[43] | Yang, W., Wang, Q., Chi, L., Wang, Y., Cao, H. and Li, W. (2019) Therapeutic Hypercapnia Reduces Blood-Brain Barrier Damage Possibly via Protein Kinase Cε in Rats with Lateral Fluid Percussion Injury. Journal of Neuroinflammation, 16, Article No. 36. https://doi.org/10.1186/s12974-019-1427-2 |
[44] | Tregub, P.P., Kulikov, V.P., Ibrahimli, I., Tregub, O.F., Volodkin, A.V., Ignatyuk, M.A., et al. (2024) Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. International Journal of Molecular Sciences, 25, Article No. 3665. https://doi.org/10.3390/ijms25073665 |
[45] | Eastwood, G.M., Schneider, A.G., Suzuki, S., Peck, L., Young, H., Tanaka, A., et al. (2016) Targeted Therapeutic Mild Hypercapnia after Cardiac Arrest: A Phase II Multi-Centre Randomised Controlled Trial (the CCC Trial). Resuscitation, 104, 83-90. https://doi.org/10.1016/j.resuscitation.2016.03.023 |
[46] | Meng, L. and Gelb, A.W. (2015) Regulation of Cerebral Autoregulation by Carbon Dioxide. Anesthesiology, 122, 196-205. https://doi.org/10.1097/aln.0000000000000506 |
[47] | Kumar, G.K. (2011) Hypoxia. 3. Hypoxia and Neurotransmitter Synthesis. American Journal of Physiology-Cell Physiology, 300, C743-C751. https://doi.org/10.1152/ajpcell.00019.2011 |
[48] | Androsova, G., Krause, R., Winterer, G. and Schneider, R. (2015) Biomarkers of Postoperative Delirium and Cognitive Dysfunction. Frontiers in Aging Neuroscience, 7, Article No. 112. https://doi.org/10.3389/fnagi.2015.00112 |
[49] | Vannucci, R.C., Brucklacher, R.M. and Vannucci, S.J. (1997) Effect of Carbon Dioxide on Cerebral Metabolism during Hypoxia-Ischemia in the Immature Rat. Pediatric Research, 42, 24-29. https://doi.org/10.1203/00006450-199707000-00005 |
[50] | Kniffin, C.D., Burnett, L.E. and Burnett, K.G. (2014) Recovery from Hypoxia and Hypercapnic Hypoxia: Impacts on the Transcription of Key Antioxidants in the Shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 170, 43-49. https://doi.org/10.1016/j.cbpb.2014.01.006 |
[51] | Ozawa, Y., Miyake, F. and Isayama, T. (2022) Efficacy and Safety of Permissive Hypercapnia in Preterm Infants: A Systematic Review. Pediatric Pulmonology, 57, 2603-2613. https://doi.org/10.1002/ppul.26108 |
[52] | Joe, Y., Lee, C.Y., Kim, N., Lee, K., Kang, S.J. and Oh, Y.J. (2023) Effect of Permissive Hypercarbia on Lung Oxygenation during One-Lung Ventilation and Postoperative Pulmonary Complications in Patients Undergoing Thoracic Surgery. European Journal of Anaesthesiology, 40, 691-698. https://doi.org/10.1097/eja.0000000000001873 |
[53] | Nassar, B. (2022) Should We Be Permissive with Hypercapnia? Annals of the American Thoracic Society, 19, 165-166. https://doi.org/10.1513/annalsats.202108-997ed |
[54] | Madotto, F., Rezoagli, E., McNicholas, B.A., Pham, T., Slutsky, A.S., Bellani, G., et al. (2020) Patterns and Impact of Arterial CO2 Management in Patients with Acute Respiratory Distress Syndrome. Chest, 158, 1967-1982. https://doi.org/10.1016/j.chest.2020.05.605 |
[55] | Palmer, B.F. and Clegg, D.J. (2023) Respiratory Acidosis and Respiratory Alkalosis: Core Curriculum 2023. American Journal of Kidney Diseases, 82, 347-359. https://doi.org/10.1053/j.ajkd.2023.02.004 |
[56] | Godoy, D.A., Rovegno, M., Lazaridis, C. and Badenes, R. (2021) The Effects of Arterial CO2 on the Injured Brain: Two Faces of the Same Coin. Journal of Critical Care, 61, 207-215. https://doi.org/10.1016/j.jcrc.2020.10.028 |
[57] | Almanza-Hurtado, A., Polanco Guerra, C., Martínez-Ávila, M.C., Borré-Naranjo, D., Rodríguez-Yanez, T. and Dueñas-Castell, C. (2022) Hypercapnia from Physiology to Practice. International Journal of Clinical Practice, 2022, Article ID: 2635616. https://doi.org/10.1155/2022/2635616 |