|
肠道菌群调节认知功能障碍的研究进展
|
Abstract:
肠道菌群不仅能维持宿主正常生理功能、参与机体衰老进程,而且可以改善大脑健康、调节认知行为。肠道菌群调节认知功能障碍,其潜在机制可能是通过肠道粘膜屏障、肠道菌群代谢产物、免疫系统,以及微生物神经递质等途径,进而影响微生物群–肠–脑轴功能。本文对肠道菌群调节认知功能障碍及潜在机制进行综述,拟为寻找预测和防治认知功能障碍的方法提出新的思路。
A healthy intestinal flora can play a significant role in maintaining physiological function and slowing down the aging process, as well as regulating brain health and enhancing cognitive function. Cognitive dysfunction may be regulated by intestinal flora through the intestinal mucosal barrier, the metabolites of intestinal flora, the immune system or microbial neurotransmitters, thus affecting the function of the microbiota-gut-brain axis. We review the regulation of intestinal flora on cognitive dysfunction and its potential mechanisms, aiming to provide new ideas for the prediction and prevention of cognitive dysfunction.
[1] | Everedb, L., Silbert, B., Knopman, D.S., Scott, D.A., DeKosky, S.T., Rasmussen, L.S., et al. (2018) Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery—2018. Anesthesiology, 129, 872-879. https://doi.org/10.1097/aln.0000000000002334 |
[2] | Chakrabarti, A., Geurts, L., Hoyles, L., Iozzo, P., Kraneveld, A.D., La Fata, G., et al. (2022) The Microbiota-Gut-Brain Axis: Pathways to Better Brain Health. Perspectives on What We Know, What We Need to Investigate and How to Put Knowledge into Practice. Cellular and Molecular Life Sciences, 79, Article No. 80. https://doi.org/10.1007/s00018-021-04060-w |
[3] | Eastwood, J., Walton, G., Van Hemert, S., Williams, C. and Lamport, D. (2021) The Effect of Probiotics on Cognitive Function across the Human Lifespan: A Systematic Review. Neuroscience & Biobehavioral Reviews, 128, 311-327. https://doi.org/10.1016/j.neubiorev.2021.06.032 |
[4] | Rashidah, N.H., Lim, S.M., Neoh, C.F., Majeed, A.B.A., Tan, M.P., Khor, H.M., et al. (2022) Differential Gut Microbiota and Intestinal Permeability between Frail and Healthy Older Adults: A Systematic Review. Ageing Research Reviews, 82, Article ID: 101744. https://doi.org/10.1016/j.arr.2022.101744 |
[5] | Ejtahed, H., Angoorani, P., Hasani-Ranjbar, S., Siadat, S., Ghasemi, N., Larijani, B., et al. (2018) Adaptation of Human Gut Microbiota to Bariatric Surgeries in Morbidly Obese Patients: A Systematic Review. Microbial Pathogenesis, 116, 13-21. https://doi.org/10.1016/j.micpath.2017.12.074 |
[6] | Angoorani, P., Ejtahed, H., Siadat, S.D., Sharifi, F. and Larijani, B. (2022) Is There Any Link between Cognitive Impairment and Gut Microbiota? A Systematic Review. Gerontology, 68, 1201-1213. https://doi.org/10.1159/000522381 |
[7] | Luczynski, P., McVey Neufeld, K., Oriach, C.S., Clarke, G., Dinan, T.G. and Cryan, J.F. (2016) Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 19, pyw020. https://doi.org/10.1093/ijnp/pyw020 |
[8] | Fernandez-Real, J., Serino, M., Blasco, G., Puig, J., Daunis-i-Estadella, J., Ricart, W., et al. (2015) Gut Microbiota Interacts with Brain Microstructure and Function. The Journal of Clinical Endocrinology & Metabolism, 100, 4505-4513. https://doi.org/10.1210/jc.2015-3076 |
[9] | Briguglio, M., Dell’Osso, B., Panzica, G., Malgaroli, A., Banfi, G., Zanaboni Dina, C., et al. (2018) Dietary Neurotransmitters: A Narrative Review on Current Knowledge. Nutrients, 10, Article No. 591. https://doi.org/10.3390/nu10050591 |
[10] | Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X., et al. (2004) Postnatal Microbial Colonization Programs the Hypothalamic-pituitary-adrenal System for Stress Response in Mice. The Journal of Physiology, 558, 263-275. https://doi.org/10.1113/jphysiol.2004.063388 |
[11] | Carlson, A.L., Xia, K., Azcarate-Peril, M.A., Goldman, B.D., Ahn, M., Styner, M.A., et al. (2018) Infant Gut Microbiome Associated with Cognitive Development. Biological Psychiatry, 83, 148-159. https://doi.org/10.1016/j.biopsych.2017.06.021 |
[12] | Emery, D.C., Shoemark, D.K., Batstone, T.E., Waterfall, C.M., Coghill, J.A., Cerajewska, T.L., et al. (2017) 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer’s Post-Mortem Brain. Frontiers in Aging Neuroscience, 9, Article No. 195. https://doi.org/10.3389/fnagi.2017.00195 |
[13] | Liufu, N., Liu, L., Shen, S., Jiang, Z., Dong, Y., Wang, Y., et al. (2020) Anesthesia and Surgery Induce Age-Dependent Changes in Behaviors and Microbiota. Aging, 12, 1965-1986. https://doi.org/10.18632/aging.102736 |
[14] | 李娜丽, 闫俊卿, 魏锦, 等. 肠道菌群与衰老相关疾病关系的研究进展[J]. 中国全科医学, 2019, 22(27): 3298-3301. |
[15] | Liu, P., Wu, L., Peng, G., Han, Y., Tang, R., Ge, J., et al. (2019) Altered Microbiomes Distinguish Alzheimer’s Disease from Amnestic Mild Cognitive Impairment and Health in a Chinese Cohort. Brain, Behavior, and Immunity, 80, 633-643. https://doi.org/10.1016/j.bbi.2019.05.008 |
[16] | Wang, P., Yin, X., Chen, G., Li, L., Le, Y., Xie, Z., et al. (2021) Perioperative Probiotic Treatment Decreased the Incidence of Postoperative Cognitive Impairment in Elderly Patients Following Non-Cardiac Surgery: A Randomised Double-Blind and Placebo-Controlled Trial. Clinical Nutrition, 40, 64-71. https://doi.org/10.1016/j.clnu.2020.05.001 |
[17] | Zhan, G., Hua, D., Huang, N., Wang, Y., Li, S., Zhou, Z., et al. (2019) Anesthesia and Surgery Induce Cognitive Dysfunction in Elderly Male Mice: The Role of Gut Microbiota. Aging, 11, 1778-1790. https://doi.org/10.18632/aging.101871 |
[18] | Collins, S.M., Surette, M. and Bercik, P. (2012) The Interplay between the Intestinal Microbiota and the Brain. Nature Reviews Microbiology, 10, 735-742. https://doi.org/10.1038/nrmicro2876 |
[19] | Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135. https://doi.org/10.1038/s41392-022-00974-4 |
[20] | Akdis, C.A. (2021) Does the Epithelial Barrier Hypothesis Explain the Increase in Allergy, Autoimmunity and Other Chronic Conditions? Nature Reviews Immunology, 21, 739-751. https://doi.org/10.1038/s41577-021-00538-7 |
[21] | Ghosh, S., Whitley, C.S., Haribabu, B. and Jala, V.R. (2021) Regulation of Intestinal Barrier Function by Microbial Metabolites. Cellular and Molecular Gastroenterology and Hepatology, 11, 1463-1482. https://doi.org/10.1016/j.jcmgh.2021.02.007 |
[22] | Daneman, R. and Rescigno, M. (2009) The Gut Immune Barrier and the Blood-Brain Barrier: Are They So Different? Immunity, 31, 722-735. https://doi.org/10.1016/j.immuni.2009.09.012 |
[23] | Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478. https://doi.org/10.1038/s41575-019-0157-3 |
[24] | van der Hee, B. and Wells, J.M. (2021) Microbial Regulation of Host Physiology by Short-Chain Fatty Acids. Trends in Microbiology, 29, 700-712. https://doi.org/10.1016/j.tim.2021.02.001 |
[25] | Bonaz, B., Bazin, T. and Pellissier, S. (2018) The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience, 12, Article No. 49. https://doi.org/10.3389/fnins.2018.00049 |
[26] | Foley, K.A., MacFabe, D.F., Vaz, A., Ossenkopp, K. and Kavaliers, M. (2014) Sexually Dimorphic Effects of Prenatal Exposure to Propionic Acid and Lipopolysaccharide on Social Behavior in Neonatal, Adolescent, and Adult Rats: Implications for Autism Spectrum Disorders. International Journal of Developmental Neuroscience, 39, 68-78. https://doi.org/10.1016/j.ijdevneu.2014.04.001 |
[27] | Fung, T.C. (2020) The Microbiota-Immune Axis as a Central Mediator of Gut-Brain Communication. Neurobiology of Disease, 136, Article ID: 104714. https://doi.org/10.1016/j.nbd.2019.104714 |
[28] | Sampson, T.R. and Mazmanian, S.K. (2015) Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host & Microbe, 17, 565-576. https://doi.org/10.1016/j.chom.2015.04.011 |
[29] | Erny, D., Hrabě de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., et al. (2015) Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nature Neuroscience, 18, 965-977. https://doi.org/10.1038/nn.4030 |
[30] | 文岑. 乙酸盐对老年小鼠术后神经认知障碍的保护作用及初步机制研究[D]: [博士学位论文]. 重庆: 中国人民解放军海军军医大学, 2020. |
[31] | 徐晓涵. 肠道微生物代谢产物短链脂肪酸部分逆转手术和麻醉诱导的小鼠行为学损伤[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2020. |
[32] | Yu, W., Gao, D., Wang, Z., Jin, W., Peng, X., Zhao, A., et al. (2019) Probiotics Alleviate Cognitive Dysfunction As-sociated with Neuroinflammation in Cardiac Surgery. American Journal of Translational Research, 11, 7614-7626. |
[33] | Liang, P., Shan, W. and Zuo, Z. (2018) Perioperative Use of Cefazolin Ameliorates Postoperative Cognitive Dysfunction but Induces Gut Inflammation in Mice. Journal of Neuroinflammation, 15, Article No. 235. https://doi.org/10.1186/s12974-018-1274-6 |
[34] | Reuveni, I., Lin, L. and Barkai, E. (2018) Complex-Learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance. Neuroscience, 381, 105-114. https://doi.org/10.1016/j.neuroscience.2018.04.023 |
[35] | Bonaz, B., Sinniger, V. and Pellissier, S. (2016) Anti‐Inflammatory Properties of the Vagus Nerve: Potential Therapeutic Implications of Vagus Nerve Stimulation. The Journal of Physiology, 594, 5781-5790. https://doi.org/10.1113/jp271539 |
[36] | Su, D., Zhao, Y., Wang, B., Xu, H., Li, W., Chen, J., et al. (2011) Isoflurane-Induced Spatial Memory Impairment in Mice Is Prevented by the Acetylcholinesterase Inhibitor Donepezil. PLOS ONE, 6, e27632. https://doi.org/10.1371/journal.pone.0027632 |
[37] | Eisenhofer, G., Kopin, I.J. and Goldstein, D.S. (2004) Catecholamine Metabolism: A Contemporary View with Implications for Physiology and Medicine. Pharmacological Reviews, 56, 331-349. https://doi.org/10.1124/pr.56.3.1 |
[38] | McLean, P.G., Borman, R.A. and Lee, K. (2007) 5-HT in the Enteric Nervous System: Gut Function and Neuropharmacology. Trends in Neurosciences, 30, 9-13. https://doi.org/10.1016/j.tins.2006.11.002 |
[39] | Schneider, E., O’Riordan, K.J., Clarke, G. and Cryan, J.F. (2024) Feeding Gut Microbes to Nourish the Brain: Unravelling the Diet-Microbiota-Gut-Brain Axis. Nature Metabolism, 6, 1454-1478. https://doi.org/10.1038/s42255-024-01108-6 |
[40] | Bruggeman, A., Vandendriessche, C., Hamerlinck, H., De Looze, D., Tate, D.J., Vuylsteke, M., et al. (2024) Safety and Efficacy of Faecal Microbiota Transplantation in Patients with Mild to Moderate Parkinson’s Disease (Gut-Parfect): A Double-Blind, Placebo-Controlled, Randomised, Phase 2 Trial. eClinicalMedicine, 71, Article ID: 102563. https://doi.org/10.1016/j.eclinm.2024.102563 |