全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脂代谢与肝生长因子:孟德尔随机化研究
Lipid Metabolism and Hepatic Growth Factors: A Mendelian Randomization Study

DOI: 10.12677/acm.2025.1541057, PP. 1294-1301

Keywords: 胆固醇,低密度脂蛋白胆固醇(LDL-C),肝生长因子(HGF)孟德尔随机化
Cholesterol
, Low Density Lipoprotein, Cholesterol (LDL-C), Liver Growth Factor (HGF), Mendel Randomization

Full-Text   Cite this paper   Add to My Lib

Abstract:

背景:脂代谢异常与多种肝脏疾病的关系备受关注。研究表明,脂质代谢异常通常与肝脏的储备功能降低有关。肝生长因子对于肝脏的生长和修复至关重要,然而,当前的研究尚未明确证实脂代谢水平异常与肝生长因子功能衰退之间的直接因果联系。在肝脏疾病的研究中,总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和甘油三酯(TG)等脂质代谢指标扮演着关键角色。方法:本研究利用全基因组关联研究(GWAS)数据,旨在深入探讨甘油三酯、总胆固醇、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)与肝生长因子(HGF)之间的关系。我们将遗传变异作为工具变量,通过孟德尔随机化(MR)方法评估胆固醇水平与肝生长因子之间的因果关系。本研究选择逆方差加权(IVW)方法作为主要的分析工具。我们采用了MR-Egger回归、关联性分析和连锁不平衡检测等方法。还进行了F检验,水平多效性和异质性等检测。结果:随机效应IVW结果为TC-HGF:比值比(OR) = 0.887,95%置信区间(CI) = [0.795, 0.991],P = 0.034,LDL-C-HGF:比值比(OR) = 0.862,95%置信区间(CI) = [0.771, 0.964],P = 0.009,证明TC和HGF之间存在负相关,且我们发现是LDL-C和HGF存在负相关。结论:本研究结果显示,基因预测的较高胆固醇水平,特别是低密度脂蛋白胆固醇(LDL-C),与肝生长因子(HGF)风险间存在负向关系。
Background: The relationship between abnormal lipid metabolism and various liver diseases has attracted much attention. Studies have shown that abnormal lipid metabolism is usually related to the decrease of liver reserve function. Liver growth factor is very important for the growth and repair of liver, 4, 5. However, the current research has not clearly confirmed the direct causal relationship between abnormal lipid metabolism level and the decline of liver growth factor function. In the study of liver diseases, lipid metabolism indexes such as total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG) play a key role. Method: In this study, genome-wide association studies (GWAS) data 7 was used to explore the relationship between triglyceride, total cholesterol, low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) and liver growth factor (HGF). We used genetic variation as a tool variable to evaluate the causal relationship between cholesterol level and liver growth factor by Mendelian randomization (MR). In this study, the inverse variance weighted (IVW) method is selected as the main analysis tool. We used MR-Egger regression, correlation analysis and linkage disequilibrium detection. F test, horizontal pleiotropy and heterogeneity were also carried out. Result: The result of random effect IVW is TC-HGF: odds ratio (OR) = 0.887, 95% confidence interval (CI) = [0.795, 0.991], P = 0.034, LDL-C-HGF: odds ratio (OR) = 0.862, 95% confidence interval (CI) = [0.771, 0.964], P = 0.009, which proves that there is a negative correlation between TC and HGF, and we find that LDL-C and HGF have a negative correlation. Conclusion: The results of

References

[1]  Anwar, S.D., Foster, C. and Ashraf, A. (2023) Lipid Disorders and Metabolic-Associated Fatty Liver Disease. Endocrinology and Metabolism Clinics of North America, 52, 445-457.
https://doi.org/10.1016/j.ecl.2023.01.003
[2]  Eslam, M., El-Serag, H.B., Francque, S., Sarin, S.K., Wei, L., Bugianesi, E., et al. (2022) Metabolic (Dysfunction)-Associated Fatty Liver Disease in Individuals of Normal Weight. Nature Reviews Gastroenterology & Hepatology, 19, 638-651.
https://doi.org/10.1038/s41575-022-00635-5
[3]  Wu, T., Ye, J., Shao, C., Li, F., Lin, Y., Ma, Q., et al. (2021) Varied Relationship of Lipid and Lipoprotein Profiles to Liver Fat Content in Phenotypes of Metabolic Associated Fatty Liver Disease. Frontiers in Endocrinology, 12, Article 691556.
https://doi.org/10.3389/fendo.2021.691556
[4]  Kathak, R.R., Sumon, A.H., Molla, N.H., Hasan, M., Miah, R., Tuba, H.R., et al. (2022) The Association between Elevated Lipid Profile and Liver Enzymes: A Study on Bangladeshi Adults. Scientific Reports, 12, Article No. 1711.
https://doi.org/10.1038/s41598-022-05766-y
[5]  Zhao, Y., Ye, W., Wang, Y. and Chen, W. (2022) HGF/c-Met: A Key Promoter in Liver Regeneration. Frontiers in Pharmacology, 13, Article 808855.
https://doi.org/10.3389/fphar.2022.808855
[6]  Michalopoulos, G.K. and Bhushan, B. (2021) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55.
https://doi.org/10.1038/s41575-020-0342-4
[7]  Campana, L., Esser, H., Huch, M. and Forbes, S. (2021) Liver Regeneration and Inflammation: From Fundamental Science to Clinical Applications. Nature Reviews Molecular Cell Biology, 22, 608-624.
https://doi.org/10.1038/s41580-021-00373-7
[8]  Deng, Y., Zhao, Z., Sheldon, M., Zhao, Y., Teng, H., Martinez, C., Zhang, J., Lin, C., Sun, Y., Yao, F., Zhu, H. and Ma, L. (2023) LIFR Recruits HGF-Producing Neutrophils to Promote Liver Injury Repair and Regeneration. BioRxiv: The Preprint Server for Biology.
https://doi.org/10.1101/2023.03.18.533289
[9]  Choi, W., Lee, J., Lee, J., Lee, S.H. and Kim, S. (2019) Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Frontiers in Physiology, 10, Article 914.
https://doi.org/10.3389/fphys.2019.00914
[10]  Yu, G., Jing, Y., Kou, X., Ye, F., Gao, L., Fan, Q., et al. (2013) Hepatic Stellate Cells Secreted Hepatocyte Growth Factor Contributes to the Chemoresistance of Hepatocellular Carcinoma. PLOS ONE, 8, e73312.
https://doi.org/10.1371/journal.pone.0073312
[11]  Karabulut, S., Tas, F., Akyüz, F., Ormeci, A.C., Serilmez, M., Soydinç, H.O., et al. (2014) Clinical Significance of Serum Hepatocyte Growth Factor (HGF) Levels in Hepatocellular Carcinoma. Tumor Biology, 35, 2327-2333.
https://doi.org/10.1007/s13277-013-1308-8
[12]  Shiota, G., Okano, J., Kawasaki, H., Kawamoto, T. and Nakamura, T. (1995) Serum Hepatocyte Growth Factor Levels in Liver Diseases: Clinical Implications. Hepatology, 21, 106-112.
https://doi.org/10.1002/hep.1840210119
[13]  Martin, A., Lang, S., Goeser, T., Demir, M., Steffen, H. and Kasper, P. (2022) Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Current Atherosclerosis Reports, 24, 533-546.
https://doi.org/10.1007/s11883-022-01028-4
[14]  Lai, X., Li, C., Xiang, C., Pan, Z., Zhang, K., Wang, L., et al. (2022) Generation of Functionally Competent Hepatic Stellate Cells from Human Stem Cells to Model Liver Fibrosis in Vitro. Stem Cell Reports, 17, 2531-2547.
https://doi.org/10.1016/j.stemcr.2022.09.010
[15]  Wiering, L., Subramanian, P. and Hammerich, L. (2023) Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 15, 1277-1292.
https://doi.org/10.1016/j.jcmgh.2023.02.010
[16]  Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265.
https://doi.org/10.1681/asn.2016010098
[17]  Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601.
https://doi.org/10.1136/bmj.k601
[18]  Pierce, B.L., Ahsan, H. and VanderWeele, T.J. (2011) Power and Instrument Strength Requirements for Mendelian Randomization Studies Using Multiple Genetic Variants. International Journal of Epidemiology, 40, 740-752.
https://doi.org/10.1093/ije/dyq151
[19]  Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[20]  Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698.
https://doi.org/10.1038/s41588-018-0099-7
[21]  Rizvi, F., Everton, E., Smith, A.R., Liu, H., Osota, E., Beattie, M., et al. (2021) Murine Liver Repair via Transient Activation of Regenerative Pathways in Hepatocytes Using Lipid Nanoparticle-Complexed Nucleoside-Modified mRNA. Nature Communications, 12, Article No. 613.
https://doi.org/10.1038/s41467-021-20903-3
[22]  Masoodi, M., Gastaldelli, A., Hyötyläinen, T., Arretxe, E., Alonso, C., Gaggini, M., et al. (2021) Metabolomics and Lipidomics in NAFLD: Biomarkers and Non-Invasive Diagnostic Tests. Nature Reviews Gastroenterology & Hepatology, 18, 835-856.
https://doi.org/10.1038/s41575-021-00502-9
[23]  Mato, J.M., Alonso, C., Noureddin, M. and Lu, S.C. (2019) Biomarkers and Subtypes of Deranged Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 25, 3009-3020.
https://doi.org/10.3748/wjg.v25.i24.3009
[24]  Geng, Y., Faber, K.N., de Meijer, V.E., Blokzijl, H. and Moshage, H. (2021) How Does Hepatic Lipid Accumulation Lead to Lipotoxicity in Non-Alcoholic Fatty Liver Disease? Hepatology International, 15, 21-35.
https://doi.org/10.1007/s12072-020-10121-2
[25]  Gluchowski, N.L., Becuwe, M., Walther, T.C. and Farese, R.V. (2017) Lipid Droplets and Liver Disease: From Basic Biology to Clinical Implications. Nature Reviews Gastroenterology & Hepatology, 14, 343-355.
https://doi.org/10.1038/nrgastro.2017.32
[26]  Beck, T., Rowlands, T., Shorter, T. and Brookes, A.J. (2023) GWAS Central: An Expanding Resource for Finding and Visualising Genotype and Phenotype Data from Genome-Wide Association Studies. Nucleic Acids Research, 51, D986-D993.
https://doi.org/10.1093/nar/gkac1017
[27]  Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389.
https://doi.org/10.1007/s10654-017-0255-x
[28]  Liang, Z., Zhang, Z., Tan, X. and Zeng, P. (2023) Lipids, Cholesterols, Statins and Liver Cancer: A Mendelian Randomization Study. Frontiers in Oncology, 13, Article 1251873.
https://doi.org/10.3389/fonc.2023.1251873
[29]  Burgess, S., Foley, C.N., Allara, E., Staley, J.R. and Howson, J.M.M. (2020) A Robust and Efficient Method for Mendelian Randomization with Hundreds of Genetic Variants. Nature Communications, 11, Article No. 376.
https://doi.org/10.1038/s41467-019-14156-4
[30]  Murtha-Lemekhova, A., Fuchs, J., Ghamarnejad, O., Nikdad, M., Probst, P. and Hoffmann, K. (2021) Influence of Cytokines, Circulating Markers and Growth Factors on Liver Regeneration and Post-Hepatectomy Liver Failure: A Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 13739.
https://doi.org/10.1038/s41598-021-92888-4
[31]  Jing, Y., Sun, Q., Xiong, X., Meng, R., Tang, S., Cao, S., et al. (2019) Hepatocyte Growth Factor Alleviates Hepatic Insulin Resistance and Lipid Accumulation in High‐Fat Diet‐Fed Mice. Journal of Diabetes Investigation, 10, 251-260.
https://doi.org/10.1111/jdi.12904
[32]  Liu, W., Jing, Y., Yu, G., Chen, H., Han, Z., Yu, D., et al. (2016) Hepatic Stellate Cell Promoted Hepatoma Cell Invasion via the HGF/c-Met Signaling Pathway Regulated by P53. Cell Cycle, 15, 886-894.
https://doi.org/10.1080/15384101.2016.1152428

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133