|
Modern Management 2025
夜间灯光数据的经济学价值拓展:贫困测度领域的应用和改进
|
Abstract:
本文围绕贫困测量的新数据源——夜间灯光数据展开深入分析,详细阐述了其在贫困测度中的独特优势、实际应用和局限,并提出针对性优化路径。夜间灯光数据凭借其独特的物理客观性和社会特征性,在贫困地图绘制和政策评估等方面发挥着重要作用,但因技术限制、提取方法缺陷、社会文化干扰等因素存在改进空间。通过采取多源数据融合提升数据质量、本土化适配、机器学习驱动优化和耦合多维贫困指标构建综合体系等优化措施,可提升灯光数据的应用价值。
This paper presents a deep analysis of night-time light data, a new data source for poverty measurement, detailing its unique advantages, practical applications and limitations in poverty measurement, and suggesting targeted ways to improve it. With its unique physical objectivity and social characteristics, night-time light data plays an important role in poverty mapping and policy assessment, but there is room for improvement due to technical limitations, flawed extraction methods and socio-cultural interference. The application value of lighting data can be enhanced by applying optimisation measures such as merging data from multiple sources to improve data quality, adapting to local conditions, using machine learning methods to optimise models, and linking multidimensional poverty indicators to build a comprehensive system.
[1] | Imhoff, M.L., Lawrence, W.T., Stutzer, D.C. and Elvidge, C.D. (1997) A Technique for Using Composite DMSP/OLS “City Lights” Satellite Data to Map Urban Area. Remote Sensing of Environment, 61, 361-370. https://doi.org/10.1016/s0034-4257(97)00046-1 |
[2] | Henderson, J.V., Storeygard, A. and Weil, D.N. (2012) Measuring Economic Growth from Outer Space. American Economic Review, 102, 994-1028. https://doi.org/10.1257/aer.102.2.994 |
[3] | Jean, N., Burke, M., Xie, M., Davis, W.M., Lobell, D.B. and Ermon, S. (2016) Combining Satellite Imagery and Machine Learning to Predict Poverty. Science, 353, 790-794. https://doi.org/10.1126/science.aaf7894 |
[4] | 王雪梅, 李新, 马明国. 基于遥感和GIS的人口数据空间化研究进展及案例分析[J]. 遥感技术与应用, 2004, 19(5): 320-327. |
[5] | 赵鑫, 宋英强, 刘轶伦, 等. 基于卫星遥感和POI数据的人口空间化研究——以广州市为例[J]. 热带地理, 2020, 40(1): 101-109. |
[6] | Elvidge, C.D., Sutton, P.C., Ghosh, T., Tuttle, B.T., Baugh, K.E., Bhaduri, B., et al. (2009) A Global Poverty Map Derived from Satellite Data. Computers & Geosciences, 35, 1652-1660. https://doi.org/10.1016/j.cageo.2009.01.009 |
[7] | Chen, R.S. and Sydor, E. (2006) Where the Poor Are: An Atlas of Poverty. Center for International Earth Science Information Network (CIESIN), The Earth Institute at Columbia University. |
[8] | 潘竟虎, 胡艳兴. 基于夜间灯光数据的中国多维贫困空间识别[J]. 经济地理, 2016, 36(11): 124-131. |
[9] | 斯丽娟, 王超群. 区域扶贫质量测度及其时空演变——基于贫困县夜间灯光数据的研究[J]. 宏观质量研究, 2020, 8(6): 28-38. |
[10] | 郑渊茂, 何原荣, 王晓荣, 等. 夜光遥感数据应用述评与展望[J]. 遥感信息, 2020, 35(3): 1-14. |
[11] | 王晓艳, 李成名, 陈宪冬, 等. 夜间灯光融合多源数据的建成区提取方法[J]. 遥感信息, 2021, 36(5): 114-123. |
[12] | 李启华, 谭荣建. Npp-viirs年度夜间灯光数据合成方法[J]. 遥感信息, 2023, 38(3): 47-53. |
[13] | 唐霞, 汤军, 李外宾, 等. 珞珈一号融合多源数据的建成区提取[J]. 遥感信息, 2023, 38(1): 78-87. |
[14] | 熊雨阳, 吕海深, 朱永华, 等. Smap射频干扰与夜间灯光分布关系初探[J]. 遥感信息, 2023, 38(1): 105-111. |
[15] | Chen, Z., Yu, B., Yang, C., Zhou, Y., Yao, S., Qian, X., et al. (2021) An Extended Time Series (2000-2018) of Global NPP-VIIRS-Like Nighttime Light Data from a Cross-Sensor Calibration. Earth System Science Data, 13, 889-906. https://doi.org/10.5194/essd-13-889-2021 |