|
碳化硼的制备及应用最新研究进展
|
Abstract:
碳化硼(B4C)凭借其高硬度、低密度、优异中子吸收能力及化学惰性等特性,在核能工程、装甲防护系统、新能源器件等战略性领域展现出重要应用潜力。本文系统综述了碳化硼材料的制备技术及其跨领域应用研究进展:重点探讨了粉体合成方法(碳热还原法、直接合成法、机械合金化法、自蔓延高温合成法及溶胶–凝胶法)与制品制备工艺(化学气相沉积、磁控溅射等关键技术)的机理特征与工艺优化路径;同时基于材料性能–结构关联性,深入阐释了其在防弹轻量化防护、核反应堆中子屏蔽、新能源储能系统及增材制造技术中的核心应用价值。最后,针对当前规模化应用存在的关键瓶颈——包括高能耗生产瓶颈、杂质相控制难题、本征脆性导致的力学性能局限及精密加工技术缺陷,前瞻性提出了绿色低碳制备技术、多尺度复合改性策略与增材制造技术相结合的协同创新体系,为碳化硼材料的工程化发展提供理论指导。
Boron carbide (B4C), characterized by its high hardness, low density, exceptional neutron absorption capacity, and chemical inertness, exhibits significant application potential in strategic fields such as nuclear engineering, armored protection systems, and advanced energy devices. This review provides a systematic analysis of the preparation technologies and cross-disciplinary application advancements of boron carbide materials. With particular emphasis on the mechanistic features and process optimization pathways, the synthesis methods for boron carbide powders (including carbothermal reduction, direct synthesis, mechanical alloying, self-propagating high-temperature synthesis, and sol-gel techniques) and fabrication processes for bulk products (such as chemical vapor deposition and magnetron sputtering) are comprehensively discussed. Furthermore, based on the intrinsic structure-property relationships, the core application values of boron carbide in lightweight ballistic protection, neutron shielding for nuclear reactors, energy storage systems, and additive manufacturing technologies are thoroughly elucidated. Finally, addressing critical bottlenecks in large-scale applications—including high energy consumption in production, impurity phase control challenges, intrinsic brittleness-induced mechanical limitations, and precision machining defects—a forward-looking synergistic innovation framework integrating green low-carbon preparation technologies, multiscale composite modification strategies, and additive manufacturing techniques is proposed, offering theoretical guidance for the engineering development of boron carbide materials.
[1] | Domnich, V., Reynaud, S., Haber, R.A. and Chhowalla, M. (2011) Boron Carbide: Structure, Properties, and Stability under Stress. Journal of the American Ceramic Society, 94, 3605-3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x |
[2] | 李欣, 牛群, 陈滨, 等. 碳热还原法制备碳化硼的热力学研究[J]. 材料与冶金学报, 2023, 22(5): 464-470. |
[3] | Höglund, C., Birch, J., Andersen, K., Bigault, T., Buffet, J., Correa, J., et al. (2012) B4C Thin Films for Neutron Detection. Journal of Applied Physics, 111, Article ID: 104908. https://doi.org/10.1063/1.4718573 |
[4] | 于国强, 刘维良, 欧阳瑞丰, 等. 碳热还原法制备碳化硼粉末的工艺研究[J]. 中国陶瓷, 2012, 48(6): 58-59+72. |
[5] | 董开朝, 高帅波, 崔晓华, 等. 硼碳比对碳热法制备碳化硼的影响[J]. 耐火材料, 2019, 53(1): 54-56. |
[6] | 陈滨, 李欣, 牛群, 等. 碳热还原法制备碳化硼原料缓释脱水研究[J]. 中国有色冶金, 2023, 52(3): 102-108. |
[7] | Alizadeh, A., Taheri-Nassaj, E. and Ehsani, N. (2004) Synthesis of Boron Carbide Powder by a Carbothermic Reduction Method. Journal of the European Ceramic Society, 24, 3227-3234. https://doi.org/10.1016/j.jeurceramsoc.2003.11.012 |
[8] | Yamada, K. (1996) Boron Carbide Particles Formed from an Amorphous Boron/Graphite Powder Mixture Using a Shock‐Wave Technique. Journal of the American Ceramic Society, 79, 1113-1116. https://doi.org/10.1111/j.1151-2916.1996.tb08557.x |
[9] | Ramos, A.S., Taguchi, S.P., Ramos, E.C.T., Arantes, V.L. and Ribeiro, S. (2006) High-Energy Ball Milling of Powder B-C Mixtures. Materials Science and Engineering: A, 422, 184-188. https://doi.org/10.1016/j.msea.2006.01.096 |
[10] | 邓丰. 机械合金化制备碳化硼亚微米材料的研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2005. |
[11] | Li, S., Zeng, B., Feng, Z., Liu, Y., Yang, W., Cheng, l., et al. (2010) Effects of Heat Treatment on the Microstructure of Amorphous Boron Carbide Coating Deposited on Graphite Substrates by Chemical Vapor Deposition. Thin Solid Films, 519, 251-258. https://doi.org/10.1016/j.tsf.2010.08.099 |
[12] | 张化宇, 韩杰才, 王华彬, 等. 气压对自蔓延高温还原合成B4C的影响[J]. 中国有色金属学报, 1999, 9(S1): 190-194. |
[13] | 石浩, 豆志河, 孟扬, 等. 动力学因素对镁热自蔓延制备碳化硼的影响(英文) [J]. 中南大学学报(英文版), 2023, 30(3): 735-748. |
[14] | 李月星, 范明聪, 王吉林, 等. 反应稀释自蔓延法制备碳化硼超细粉[J]. 武汉工程大学学报, 2018, 40(2): 186-189. |
[15] | Aghili, S., Panjepour, M., Meratian, M. and Hadadzadeh, H. (2020) Effects of Boron Oxide Composition, Structure, and Morphology on B4C Formation via the SHS Process in the B2O3-Mg-C Ternary System. Ceramics International, 46, 7223-7234. https://doi.org/10.1016/j.ceramint.2019.11.217 |
[16] | Avcıoğlu, S., Kaya, F. and Kaya, C. (2021) Morphological Evolution of Boron Carbide Particles: Sol-Gel Synthesis of Nano/Micro B4C Fibers. Ceramics International, 47, 26651-26667. https://doi.org/10.1016/j.ceramint.2021.06.073 |
[17] | Najafi, A., Golestani-Fard, F. and Rezaie, H.R. (2018) Sol-Gel Synthesis and Characterization of B4C Nanopowder. Ceramics International, 44, 21386-21394. https://doi.org/10.1016/j.ceramint.2018.08.196 |
[18] | Choolakkal, A.H., Persson, I., Etula, J., Salmi, E., Juntunen, T., Persson, P.O.Å., et al. (2025) Conformal Chemical Vapor Deposition of B4C Thin Films onto Carbon Nanotubes. Nanoscale, 17, 5961-5971. https://doi.org/10.1039/d4nr04704d |
[19] | 李宝伟, 仝建峰, 黄浩. CVD法制备SiC纤维B4C涂层工艺研究[C]//中国力学学会. 第十五届全国复合材料学术会议论文集(上册). 北京: 国防工业出版社, 2008: 348-351. |
[20] | 张红萍, 唐爱东. 炭纤维表面用化学气相沉积法涂覆碳化硼的研究[J]. 炭素技术, 2004, 23(5): 1-5. |
[21] | Schmidt, S., Höglund, C., Jensen, J., Hultman, L., Birch, J. and Hall-Wilton, R. (2016) Low-Temperature Growth of Boron Carbide Coatings by Direct Current Magnetron Sputtering and High-Power Impulse Magnetron Sputtering. Journal of Materials Science, 51, 10418-10428. https://doi.org/10.1007/s10853-016-0262-4 |
[22] | Arık, M.N., Yıldırım, C. and Solak, N. (2023) Improving the Oxidation Resistance of Carbon Fibers via B4C Coating by Modified Boron Oxide Chemical Vapor Deposition. Solid State Sciences, 146, Article ID: 107367. https://doi.org/10.1016/j.solidstatesciences.2023.107367 |
[23] | 韩增虎, 田家万, 李戈扬, 等. 磁控溅射B4C薄膜的制备与力学性能[J]. 真空科学与技术学报, 2002, 22(1): 45-48. |
[24] | 冯秦旭. 涂硼中子探测器用B4C薄膜的低温制备技术研究[D]: [硕士学位论文]. 上海: 同济大学, 2019. |
[25] | 朱京涛, 刘扬, 周健荣, 等. 磁控溅射制备碳化硼薄膜的结构与成分分析[J]. 光学仪器, 2024, 46(2): 63-68. |
[26] | Wu, Y., Liu, Y., Kuang, Z., Hussain, M., Yang, W., Zhou, C., et al. (2022) High-Quality Boron Carbide Nanowires Prepared by Catalyst-Free Template Growth Method. Ceramics International, 48, 21846-21855. https://doi.org/10.1016/j.ceramint.2022.04.168 |
[27] | 韦进全, 江斌, 李延辉, 等. 碳化硼纳米线的制备和结构[J]. 物理化学学报, 2004(3): 256-259. |
[28] | 姜丽丽, 黄元, 杨天中, 等. 垂直石墨烯和图案化碳化硼纳米线的制备及场发射性质[C]//中国电子学会真空电子学分会, 大功率微波电真空器件技术国家级重点实验室. 中国电子学会真空电子学分会第十九届学术年会论文集. 2013: 736-736. |
[29] | 龚勋, 魏文华, 赵小舟, 等. 碳化硼陶瓷的军工应用及前沿制备技术[J]. 中国军转民, 2021(5): 56-59. |
[30] | 汪建锋, 丁华东. 碳化硼基微观结构复合材料在轻装甲防护领域的研究与应用前景[C]//中国航空学会, 中国宇航学会, 中国力学学会. 第十三届全国复合材料学术会议论文集. 北京: 航空工业出版社, 2004: 769-772. |
[31] | 林爽, 乔英杰, 刘爱东. 碳化硼陶瓷的性能及其在核工业领域的应用进展[C]//中国力学学会. 第十五届全国复合材料学术会议论文集. 北京: 国防工业出版社, 2008: 1480-1484. |
[32] | 尹俊红, 燕鸽, 吕亚军, 等. 新型碳化硼混凝土中子屏蔽性能研究[J]. 混凝土, 2024(12): 22-28. |
[33] | 董绍明, 何平, 刘君, 翟巍. 我国碳化硼制品的开发应用状况[C]//中国五矿化工进出口商会, 营口市人民政府, 辽宁省人民政府. 第七届中国辽宁(营口·大石桥)国际镁质材料(创新成果)博览会暨硼产业发展论坛论文集. 2016: 27-28. |
[34] | Grubb, W.T. and Mckee, D.W. (1966) Boron Carbide, a New Substrate for Fuel Cell Electrocatalysts. Nature, 210, 192-194. https://doi.org/10.1038/210192b0 |
[35] | 苏静, 王艳辉, 董亮, 等. 碳化硅和碳化硼在电催化中的应用[J]. 无机化学学报, 2018, 34(1): 1-10. |
[36] | Song, S., Xu, W., Cao, R., Luo, L., Engelhard, M.H., Bowden, M.E., et al. (2017) B4C as a Stable Non-Carbon-Based Oxygen Electrode Material for Lithium-Oxygen Batteries. Nano Energy, 33, 195-204. https://doi.org/10.1016/j.nanoen.2017.01.042 |
[37] | 严茜, 都兴红, 龙孟, 等. 碳化硼的制备、应用与碳化硼研磨料的回收前景[J]. 中国陶瓷, 2015, 51(4): 9-12. |
[38] | 吴高建, 刘胜利, 徐锡斌, 等. 探索新型高温超导材料碳化硼的研究[J]. 低温物理学报, 2003, 25(z1): 269-271. |
[39] | 宋喜彬, 滕俊清, 石阿薇. 在电瓷成型刀具上电镀碳化硼粉的研究[J]. 机械工程师, 1991(3): 27-29. |