|
聚苯胺纳米粒子的可控制备及其在超级电容器中的应用
|
Abstract:
聚苯胺(PANI)因其较高的电导率、良好的环境稳定性和高赝电容特性,在能源存储领域受到广泛关注。本文采用原位聚合法,分别以纳米Fe?O?和SiO?为模板,成功制备了尺寸约为30 nm的Fe3O4@PANI纳米粒子和直径约为100 nm的单分散SiO2@PANI纳米球。通过将上述尺寸可控的纳米粒子引入MXene基体中,制得Fe3O4@PANI/MXene和SiO2@PANI/MXene复合膜,二者展现出增强的电容性能。Fe3O4@PANI/MXene和SiO2@PANI/MXene所组装的超级电容器的比电容分别为193.7 F/g (1 A/g)和197.3 F/g (2 A/g),显著优于纯的MXene (168.8 F/g)。此外,基于SiO2@PANI/MXene的超级电容器还表现出优异的倍率性能。上述结果表明,聚苯胺纳米粒子的引入可有效改善MXene的电容性能,突显其在先进超级电容器应用中的潜在价值。
Polyaniline (PANI) has garnered significant interest in energy storage applications owing to its superior electrical conductivity, environmental stability, and remarkable pseudocapacitive properties. In this study, Fe3O4@PANI nanoparticles (~30 nm in diameter) and monodisperse SiO2@PANI nanospheres (~100 nm in diameter) were synthesized via an in situ polymerization method using nano-Fe3O4 and nano-SiO2 as templates, respectively. The incorporation of these size-controlled nanoparticles into MXene matrices yielded Fe3O4@PANI/MXene and SiO2@PANI/MXene composite films, both exhibiting enhanced capacitive performance. The fabricated supercapacitors demonstrated specific capacitances of 193.7 F?g?1 (at a current density of 1 A?g?1) for Fe3O4@PANI/MXene and 197.3 F?g?1 (at 2 A?g?1) for SiO2@PANI/MXene, significantly surpassing that of pristine MXene (168.8 F?g?1). Furthermore, the SiO2@PANI/MXene-based supercapacitor displayed outstanding rate capability. These findings highlight that the integration of PANI nanoparticles effectively improves the capacitive behavior of MXene, underscoring its promising potential for advanced supercapacitor applications.
[1] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[2] | Zeng, Z., Küspert, S., Balaghi, S.E., Hussein, H.E.M., Ortlieb, N., Knäbbeler‐Buß, M., et al. (2023) Ultrahigh Mass Activity Pt Entities Consisting of Pt Single Atoms, Clusters, and Nanoparticles for Improved Hydrogen Evolution Reaction. Small, 19, Article 2205885. https://doi.org/10.1002/smll.202205885 |
[3] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[4] | 杨琳, 张钰桐, 覃炜雯, 等. 聚苯胺的制备及其在传感检测中的应用[J]. 海南师范大学学报(自然科学版), 2024, 37(2): 174-178. |
[5] | 王彪, 陈鼎智, 马安宁, 等. 聚苯胺纳米线复合材料的制备与储能性分析[J]. 中国表面工程, 2023, 36(3): 121-131. |
[6] | 焦盛清, 王延敏, 张凯. 导电聚苯胺纳米管制备及应用的研究进展[J]. 胶体与聚合物, 2024, 42(2): 91-95. |
[7] | 吕秋丰, 张佳音, 何志伟. 苯胺与吡咯共聚物空心球的自组装制备及性能[J]. 高分子学报, 2012(3): 299-306. |
[8] | Dong, J., Hua, L., Lu, Z., Xie, F., Xu, X., Guo, Z., et al. (2024) Double Cross-Linking System for Constructing Tortuosity-Lowered and Strength-Enhanced Porous MXene Films with Superior Capacitive Performance and Electromagnetic Shielding Efficiency. Energy Storage Materials, 72, Article 103686. https://doi.org/10.1016/j.ensm.2024.103686 |
[9] | Hu, M., Zhang, H., Hu, T., Fan, B., Wang, X. and Li, Z. (2020) Emerging 2D MXenes for Supercapacitors: Status, Challenges and Prospects. Chemical Society Reviews, 49, 6666-6693. https://doi.org/10.1039/d0cs00175a |