全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

隧道掘进参数与施工组织协同优化探究
Exploration of Tunnel Boring Parameters and Construction Organization Synergistic Optimization

DOI: 10.12677/hjce.2025.144069, PP. 643-650

Keywords: 隧道掘进,施工组织优化,协同优化模型,推进速度优化
Tunnel Boring
, Construction Organization Optimization, Synergistic Optimization Model, Propulsion Speed Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提升隧道掘进效率并降低施工成本,本文提出了一种基于推进速度、推进力、资源利用率和施工成本的协同优化模型,结合数值模拟和现场监测对优化效果进行了验证。仿真与实测结果表明,优化后推进速度由2.5 m/h提升至3.0 m/h (+20%),推进力稳定在720 kN (+20%),资源利用率从75%提升至90% (+15%),施工成本从5.5万元/米降至5.0万元/米(?9%)。研究中提出的关键技术包括推进速度实时优化、推进力动态反馈控制和资源调度优化,尤其在复杂地质条件下显著提升了施工效率,验证了协同优化模型的可靠性与实用性。本研究为隧道掘进施工的效率提升与成本控制提供了有力参考,并为智能化施工技术的发展奠定了基础。
To enhance tunnel boring efficiency and reduce construction costs, this study proposes a synergistic optimization model based on propulsion speed, propulsion force, resource utilization, and construction cost. The optimization effectiveness is validated through numerical simulations and field monitoring. The simulation and empirical results indicate that, after optimization, the propulsion speed increased from 2.5 m/h to 3.0 m/h (+20%), the propulsion force stabilized at 720 kN (+20%), resource utilization improved from 75% to 90% (+15%), and construction cost decreased from 55,000 yuan/m to 50,000 yuan/m (?9%). The key technologies proposed in this study include real-time propulsion speed optimization, dynamic feedback control of propulsion force, and resource scheduling optimization. These techniques significantly enhance construction efficiency, particularly under complex geological conditions, and verify the reliability and applicability of the synergistic optimization model. This research provides valuable insights for improving tunnel boring efficiency and cost control, laying a foundation for the advancement of intelligent construction technology.

References

[1]  李宏波, 张冬月, 葛学元. 基于PSO-LSSVM算法的隧道掘进机掘进参数预测方法[J]. 科学技术与工程, 2023, 23(14): 6230-6237.
[2]  高修强, 彭达, 王国光, 等. 考虑盾构机参数主动控制的隧道掘进地表沉降智能预测方法[J]. 北京交通大学学报, 2024, 48(3): 120-129.
[3]  赵斌. 复杂环境下海底隧道大盾构掘进施工参数控制研究[J]. 铁道建筑技术, 2024(1): 154-158.
[4]  Yan, T., Shen, S. and Zhou, A. (2022) Identification of Geological Characteristics from Construction Parameters during Shield Tunnelling. Acta Geotechnica, 18, 535-551.
https://doi.org/10.1007/s11440-022-01590-w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133