全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水下图像恢复算法综述
A Review of Underwater Image Restoration Algorithms

DOI: 10.12677/jisp.2025.142024, PP. 257-270

Keywords: 水下图像恢复,图像增强,物理模型,深度学习,实时处理
Underwater Image Restoration
, Image Enhancement, Physics-Based Methods, Deep Learning, Real-Time Processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

水下图像恢复算法的研究旨在解决水下环境中由于光线吸收和散射导致的图像质量下降问题,以提高水下图像的清晰度和信息可用性。本综述总结了近年来水下图像恢复领域的研究进展,包括基于物理模型的方法、基于数据统计的方法以及基于深度学习的算法。物理模型方法通过分析水下光传输特性(如暗通道先验、红通道方法等)恢复图像清晰度;数据统计方法依赖于统计特性和优化技术(如直方图均衡、融合策略等);基于深度学习的方法利用卷积神经网络(CNN)、生成对抗网络(GAN)等模型在无监督和有监督框架下实现高效的图像增强与恢复。这些方法在去雾、色彩校正和对比度增强方面取得了显著进展,但在应对复杂光学条件及处理速度优化方面仍存在挑战。综述最后探讨了该领域的发展趋势,指出结合物理模型与深度学习的混合方法以及实时恢复算法将成为未来的重要研究方向。
The study of underwater image restoration algorithms aims to address the quality degradation of underwater images caused by light absorption and scattering, thereby enhancing image clarity and usability for various applications. This review summarizes recent advancements in the field, focusing on three main categories: physics-based methods, data-based techniques, and deep learning-based approaches. Physics-based methods analyze light propagation characteristics in underwater environ- ments, employing techniques such as the dark channel prior, red channel methods, and polarization analysis to restore image clarity. Data-driven methods rely on statistical and optimization techniques, including histogram equalization, fusion strategies, and color correction models, to enhance image quality. Meanwhile, deep learning-based approaches utilize models like convolutional neural networks (CNNs) and generative adversarial networks (GANs) to achieve effective and adaptive restoration within both supervised and unsupervised frameworks. These methods have demonstrated remarkable advancements in dehazing, color correction, and contrast enhancement. Despite these achievements, challenges remain in addressing complex optical environments and improving computational efficiency for real-time applications. This review highlights the need for hybrid methods that integrate the strengths of physics-based models and deep learning, as well as the development of algorithms tailored for real-time underwater image restoration. Future research is expected to focus on achieving greater robustness, adaptability, and processing speed, enabling wider adoption in underwater robotics, marine research, and environmental monitoring.

References

[1]  Schechner, Y.Y. and Karpel, N. (2005) Recovery of Underwater Visibility and Structure by Polarization Analysis. IEEE Journal of Oceanic Engineering, 30, 570-587.
https://doi.org/10.1109/joe.2005.850871
[2]  Treibitz, T. and Schechner, Y.Y. (2009) Active Polarization Descattering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 385-399.
https://doi.org/10.1109/tpami.2008.85
[3]  Li, C., Guo, J., Cong, R., Pang, Y. and Wang, B. (2016) Underwater Image Enhancement by Dehazing with Minimum Information Loss and Histogram Distribution Prior. IEEE Transactions on Image Processing, 25, 5664-5677.
https://doi.org/10.1109/tip.2016.2612882
[4]  He, K.M., Sun, J. and Tang, X.O. (2011) Single Image Haze Removal Using Dark Channel Prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353.
https://doi.org/10.1109/tpami.2010.168
[5]  Galdran, A., Pardo, D., Picón, A. and Alvarez-Gila, A. (2015) Automatic Red-Channel Underwater Image Restoration. Journal of Visual Communication and Image Representation, 26, 132-145.
https://doi.org/10.1016/j.jvcir.2014.11.006
[6]  Ancuti, C., Ancuti, C.O., Haber, T. and Bekaert, P. (2012) Enhancing Underwater Images and Videos by Fusion. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16-21 June 2012, 81-88.
https://doi.org/10.1109/cvpr.2012.6247661
[7]  Fabbri, C., Islam, M.J. and Sattar, J. (2018) Enhancing Underwater Imagery Using Generative Adversarial Networks. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, 21-25 May 2018, 7159-7165.
https://doi.org/10.1109/icra.2018.8460552
[8]  Li, J., Skinner, K.A., Eustice, R.M. and Johnson-Roberson, M. (2017) WaterGAN: Unsupervised Generative Network to Enable Real-Time Color Correction of Monocular Underwater Images. IEEE Robotics and Automation Letters, 3, 387-394.
https://doi.org/10.1109/lra.2017.2730363
[9]  Hu, Y., Wang, K. and Zhao, X. (2018) Underwater Image Restoration Based on Convolutional Neural Network. Proceedings of the 10th Asian Conference on Machine Learning, Beijing, 14-16 November 2018, 296-311.
[10]  Borker, S. and Bonde, S. (2017) Contrast Enhancement and Visibility Restoration of Underwater Optical Images Using Fusion. International Journal of Intelligent Engineering and Systems, 10, 217-225.
https://doi.org/10.22266/ijies2017.0831.23
[11]  Lu, H., Li, Y., Nakashima, S. and Serikawa, S. (2016) Turbidity Underwater Image Restoration Using Spectral Properties and Light Compensation. IEICE Transactions on Information and Systems, 99, 219-227.
https://doi.org/10.1587/transinf.2014edp7405
[12]  Khan, R. (2015) Underwater Image Restoration Using Fusion and Wavelet Transform Strategy. Journal of Computers, 10, 237-244.
https://doi.org/10.17706/jcp.10.4.237-244
[13]  Xie, K., Pan, W. and Xu, S. (2018) An Underwater Image Enhancement Algorithm for Environment Recognition and Robot Navigation. Robotics, 7, Article 14.
https://doi.org/10.3390/robotics7010014
[14]  Chiang, J.Y. and Ying-Ching Chen, (2012) Underwater Image Enhancement by Wavelength Compensation and Dehazing. IEEE Transactions on Image Processing, 21, 1756-1769.
https://doi.org/10.1109/tip.2011.2179666
[15]  Gao, Y., Li, H. and Wen, S. (2016) Restoration and Enhancement of Underwater Images Based on Bright Channel Prior. Mathematical Problems in Engineering, 2016, Article ID: 3141478.
https://doi.org/10.1155/2016/3141478
[16]  Zhu, Q.S., Mai, J.M. and Shao, L. (2015) A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Transactions on Image Processing, 24, 3522-3533.
https://doi.org/10.1109/tip.2015.2446191
[17]  Tan, C.S., Sluzek, A., L., G.S.G. and Jiang, T.Y. (2006) Range Gated Imaging System for Underwater Robotic Vehicle. OCEANS 2006—Asia Pacific, Singapore, 16-19 May 2006, 1-6.
https://doi.org/10.1109/oceansap.2006.4393938
[18]  Wang, Y. (2018) A Novel Underwater Image Restoration Algorithm. International Journal of Performability Engineering, 14, 1513-1520.
https://doi.org/10.23940/ijpe.18.07.p15.15131520
[19]  Wang, G., Zheng, B. and Fei Sun, F. (2011) Estimation-based Approach for Underwater Image Restoration. Optics Letters, 36, 2384-2386.
https://doi.org/10.1364/ol.36.002384
[20]  Trucco, E. and Olmos-Antillon, A.T. (2006) Self-Tuning Underwater Image Restoration. IEEE Journal of Oceanic Engineering, 31, 511-519.
https://doi.org/10.1109/joe.2004.836395
[21]  Roser, M., Dunbabin, M. and Geiger, A. (2014) Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 31 May-7 June 2014, 3840-3847.
https://doi.org/10.1109/icra.2014.6907416
[22]  Kaeli, J.W., Singh, H., Murphy, C. and Kunz, C. (2011) Improving Color Correction for Underwater Image Surveys. Oceans’11 MTS/IEEE KONA, Waikoloa, 19-22 September 2011, 1-6.
https://doi.org/10.23919/oceans.2011.6107143
[23]  Wen, H.C., Tian, Y.H., Huang, T.J. and Gao, W. (2013) Single Underwater Image Enhancement with a New Optical Model. 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, 19-23 May 2013, 753-756.
https://doi.org/10.1109/iscas.2013.6571956
[24]  Drews Jr, P., do Nascimento, E., Moraes, F., Botelho, S. and Campos, M. (2013) Transmission Estimation in Underwater Single Images. 2013 IEEE International Conference on Computer Vision Workshops, Sydney, 2-8 December 2013, 825-830.
https://doi.org/10.1109/iccvw.2013.113
[25]  Carlevaris-Bianco, N., Mohan, A. and Eustice, R.M. (2010) Initial Results in Underwater Single Image Dehazing. OCEANS 2010 MTS/IEEE SEATTLE, Seattle, 20-23 September 2010, 1-8.
https://doi.org/10.1109/oceans.2010.5664428
[26]  Liu, C. and Meng, W. (2010) Removal of Water Scattering. Proceeding of International Conference Computer Engineering and Technology, Chengdu, 16-18 April 2010, 35-39.
[27]  Iqbal, K., Abdul Salam, R. and Azam, O. (2007) Underwater Image Enhancement Using an Integrated Colour Model. IAENG International Journal of Computer Science, 34, 1-6.
[28]  Hitam, M.S., Yussof, W.N.J.H.W., Awalludin, E.A. and Bachok, Z. (2013) Mixture Contrast Limited Adaptive Histogram Equalization for Underwater Image Enhancement. 2013 International Conference on Computer Applications Technology (ICCAT), Sousse, 20-22 January 2013, 1-5.
https://doi.org/10.1109/iccat.2013.6522017
[29]  Deperlioglu, O., Köse, U. and Emre Guraksin, G. (2018) Underwater Image Enhancement with HSV and Histogram Equalization. Proceedings of the International Conference of Advanced technologies, Antalya, 28 April-1 May 2018 461-465.
[30]  Zhang, W., Li, G. and Ying, Z. (2017) A New Underwater Image Enhancing Method via Color Correction and Illumination Adjustment. 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, 10-13 December 2017, 1-4.
https://doi.org/10.1109/vcip.2017.8305027
[31]  Zhishen, L., Tianfu, D. and Gang, W. (2003) ROV Based Underwater Blurred Image Restoration. Journal of Ocean University of Qingdao, 2, 85-88.
https://doi.org/10.1007/s11802-003-0033-0
[32]  Anwar, S., Li, C. and Porikli, F. (2018) Deep Underwater Image Enhancement. arXiv: 1807.03528.
[33]  Iqbal, K., Odetayo, M., James, A., Salam, R.A. and Hj Talib, A.Z. (2010) Enhancing the Low Quality Images Using Unsupervised Colour Correction Method. 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, 10-13 October 2010, 1703-1709.
https://doi.org/10.1109/icsmc.2010.5642311
[34]  Chambah, M., Semani, D., Renouf, A., Courtellemont, P. and Rizzi, A. (2003) Underwater Color Constancy: Enhancement of Automatic Live Fish Recognition. SPIE Proceedings, California, 18 December 2003, 157-168.
https://doi.org/10.1117/12.524540
[35]  Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X. and Ding, X. (2014) A Retinex-Based Enhancing Approach for Single Underwater Image. 2014 IEEE International Conference on Image Processing (ICIP), Paris, 27-30 October 2014, 4572-7576.
https://doi.org/10.1109/icip.2014.7025927
[36]  Wu, M., Luo, K., Dang, J. and Li, D. (2017) Underwater Image Restoration Using Color Correction and Non-Local Prior. OCEANS 2017—Aberdeen, Aberdeen, 19-22 June 2017, 1-5.
https://doi.org/10.1109/oceanse.2017.8084916
[37]  Bt Shamsuddin, N., Bt Wan Ahmad, W.F., Baharudin, B.B., Kushairi, M., Rajuddin, M. and Bt Mohd, F. (2012) Significance Level of Image Enhancement Techniques for Underwater Images. 2012 International Conference on Computer & Information Science (ICCIS), Kuala Lumpur, 12-14 June 2012, 490-494.
https://doi.org/10.1109/iccisci.2012.6297295
[38]  Ancuti, C.O. and Ancuti, C. (2013) Single Image Dehazing by Multi-Scale Fusion. IEEE Transactions on Image Processing, 22, 3271-3282.
https://doi.org/10.1109/tip.2013.2262284
[39]  Gupta, R. and Farooqui, Z. (2015) Underwater Image Clearance Using Dark Channel and FFT Enhancement. International Journal of Computer Applications, 119, 21-25.
https://doi.org/10.5120/21377-4116
[40]  Yang, H., Chen, P., Huang, C., Zhuang, Y. and Shiau, Y. (2011) Low Complexity Underwater Image Enhancement Based on Dark Channel Prior. 2011 Second International Conference on Innovations in Bio-Inspired Computing and Applications, Shenzhen, 16-18 December 2011, 17-20.
https://doi.org/10.1109/ibica.2011.9
[41]  Wang, Y., Zhang, J., Cao, Y. and Wang, Z. (2017) A Deep CNN Method for Underwater Image Enhancement. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, 17-20 September 2017, 1382-1386.
https://doi.org/10.1109/icip.2017.8296508
[42]  Shin, Y., Cho, Y., Pandey, G. and Kim, A. (2016) Estimation of Ambient Light and Transmission Map with Common Convolutional Architecture. OCEANS 2016 MTS/IEEE Monterey, Monterey, 19-23 September 2016, 1-7.
https://doi.org/10.1109/oceans.2016.7761342
[43]  Lu, H., Li, Y., Kim, H. and Serikawa, S. (2017) Underwater Light Field Depth Map Restoration Using Deep Convolutional Neural Fields. In: Lu, H. and Xu, X., Eds., Artificial Intelligence and Robotics, Springer, 305-312.
https://doi.org/10.1007/978-3-319-69877-9_33
[44]  Wang, N., Qi, L., Dong, J., Fan, H., Chen, X. and Yu, H. (2017) Two-Stage Underwater Image Restoration Based on a Physical Model. SPIE Proceedings, Tokyo, 8 February 2017, 1-6.
https://doi.org/10.1117/12.2266488
[45]  Yang, M., Sowmya, A., Wei, Z. and Zheng, B. (2017) Inshore Eutrophic Underwater Image Enhancement Based on Light-Particles Interaction Descattering. OCEANS 2017—Aberdeen, Aberdeen, 19-22 June 2017, 1-5.
https://doi.org/10.1109/oceanse.2017.8084657
[46]  Meng, G., Wang, Y., Duan, J., Xiang, S. and Pan, C. (2013) Efficient Image Dehazing with Boundary Constraint and Contextual Regularization. 2013 IEEE International Conference on Computer Vision, Sydney, 1-8 December 2013, 617-624.
https://doi.org/10.1109/iccv.2013.82
[47]  Wong, S., Paramesran, R. and Taguchi, A. (2018) Underwater Image Enhancement by Adaptive Gray World and Differential Gray-Levels Histogram Equalization. Advances in Electrical and Computer Engineering, 18, 109-116.
https://doi.org/10.4316/aece.2018.02014
[48]  Li, C., Guo, J., Chen, S., Tang, Y., Pang, Y. and Wang, J. (2016) Underwater Image Restoration Based on Minimum Information Loss Principle and Optical Properties of Underwater Imaging. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, 25-28 September 2016, 1993-1997.
https://doi.org/10.1109/icip.2016.7532707
[49]  Garcia, R., Nicosevici, T., Gracias, N., et al. (2017) Exploring the Seafloor with Underwater Robots: Land, Sea & Air. In: Lopez, A.M., Imiya, A., Pajdla, T., et al., Eds., Computer Vision in Vehicle Technology, John Wiley & Sons Ltd, 75-99.
[50]  Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S. and Kim, H. (2017) Underwater Optical Image Processing: A Comprehensive Review. Mobile Networks and Applications, 22, 1204-1211.
https://doi.org/10.1007/s11036-017-0863-4
[51]  Sahu, P., Gupta, N. and Sharma, N. (2014) A Survey on Underwater Image Enhancement Techniques. International Journal of Computer Applications, 87, 19-23.
https://doi.org/10.5120/15268-3743
[52]  Li, H., Wang, X., Bai, T., Jin, W., Huang, Y. and Ding, K. (2009) Speckle Noise Suppression of Range Gated Underwater Imaging System. SPIE Proceedings, California, 2 September 2009, 1-8.
https://doi.org/10.1117/12.831994
[53]  Wang, M., Zhou, S. and Yan, W. (2018) Blurred Image Restoration Using Knife-Edge Function and Optimal Window Wiener Filtering. PLOS ONE, 13, e0191833.
https://doi.org/10.1371/journal.pone.0191833
[54]  Bazeille, S., Quidu, I., Jaulin, L., et al. (2006) Automatic Underwater Image Preprocessing. Proceeding Characterisation du Milieu Marin, Brest, 16-19 Octobre 2006, 1-11.
[55]  Petit, F., Capelle-Laize, A. and Carre, P. (2009) Underwater Image Enhancement by Attenuation Inversionwith Quaternions. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 19-24 April 2009, 1177-1180.
https://doi.org/10.1109/icassp.2009.4959799
[56]  Gibson, K.B. (2015) Preliminary Results in Using a Joint Contrast Enhancement and Turbulence Mitigation Method for Underwater Optical Imaging. OCEANS 2015—MTS/IEEE Washington, Washington, 19-22 October 2015, 1-5.
https://doi.org/10.23919/oceans.2015.7404514
[57]  Arnold-Bos, A., Malkasse, J.P. and Kervern, G. (2005) A Preprocessing Framework for Automatic Underwater Images Denoising. Proceeding of European Conference Propagation and Systems, Pairs, 12-14 March 2005, 1-8.
[58]  Arnold-Bos, A., Malkasse, J.P. and Kervern, G. (2005) Towards a Model-Free Denoising of Underwater Optical Images. Europe Oceans 2005, Brest, 20-23 June 2005, 527-532.
https://doi.org/10.1109/oceanse.2005.1511770
[59]  Emberton, S., Chittka, L. and Cavallaro, A. (2015) Hierarchical Rank-Based Veiling Light Estimation for Underwater Dehazing. Proceedings of the British Machine Vision Conference 2015, Swansea, 7-10 September 2015, 125.1-125.12.
https://doi.org/10.5244/c.29.125
[60]  Chen, Z., Wang, H., Shen, J., Li, X. and Xu, L. (2014) Region-Specialized Underwater Image Restoration in Inhomogeneous Optical Environments. Optik, 125, 2090-2098.
https://doi.org/10.1016/j.ijleo.2013.10.038
[61]  Fattal, R. (2008) Single Image Dehazing. ACM Transactions on Graphics, 27, 1-9.
https://doi.org/10.1145/1360612.1360671
[62]  Peng, Y., Zhao, X. and Cosman, P.C. (2015) Single Underwater Image Enhancement Using Depth Estimation Based on Blurriness. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, 27-30 September 2015, 4952-4956.
https://doi.org/10.1109/icip.2015.7351749
[63]  Liu, Z. (2001) Underwater Image Transmission and Blurred Image Restoration. Optical Engineering, 40, 1125-1131.
https://doi.org/10.1117/1.1364500
[64]  Çelebi, A.T. and Ertürk, S. (2012) Visual Enhancement of Underwater Images Using Empirical Mode Decomposition. Expert Systems with Applications, 39, 800-805.
https://doi.org/10.1016/j.eswa.2011.07.077
[65]  Drews, P.L.J., Nascimento, E.R., Botelho, S.S.C. and Montenegro Campos, M.F. (2016) Underwater Depth Estimation and Image Restoration Based on Single Images. IEEE Computer Graphics and Applications, 36, 24-35.
https://doi.org/10.1109/mcg.2016.26
[66]  Liu, J., Liu, R.W., Sun, J. and Zeng, T. (2021) Rank-One Prior: Toward Real-Time Scene Recovery. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 20-25 June 2021, 14797-14805.
https://doi.org/10.1109/cvpr46437.2021.01456
[67]  Liu, J., Liu, R.W., Sun, J. and Zeng, T. (2023) Rank-One Prior: Real-Time Scene Recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 8845-8860.
https://doi.org/10.1109/tpami.2022.3226276
[68]  Peng, Y. and Cosman, P.C. (2017) Underwater Image Restoration Based on Image Blurriness and Light Absorption. IEEE Transactions on Image Processing, 26, 1579-1594.
https://doi.org/10.1109/tip.2017.2663846
[69]  Buchsbaum, G. (1980) A Spatial Processor Model for Object Colour Perception. Journal of the Franklin Institute, 310, 1-26.
https://doi.org/10.1016/0016-0032(80)90058-7
[70]  Ancuti, C.O., Ancuti, C., De Vleeschouwer, C. and Bekaert, P. (2018) Color Balance and Fusion for Underwater Image Enhancement. IEEE Transactions on Image Processing, 27, 379-393.
https://doi.org/10.1109/tip.2017.2759252
[71]  Yang, Y., Liang, J., Yu, B., Chen, Y., Ren, J.S. and Shi, B. (2024) Latency Correction for Event-Guided Deblurring and Frame Interpolation. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 16-22 June 2024, 24977-24986.
https://doi.org/10.1109/cvpr52733.2024.02359

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133