|
CO2/Ar水膜式介质阻挡放电等离子体降解卡马西平机理研究
|
Abstract:
近年来,卡马西平因其高额的使用量,在自然水体中的检出率逐渐增加,寻找新的高效清洁的方法对其进行治理也成为了一项新的挑战。本研究采用同轴双介质阻挡放电反应器,以CO2和氩气为放电气体,对以水膜形式流过放电区域的卡马西平溶液进行有效降解。重点研究了不同比例CO2/Ar气氛等离子体放电对CO2转化率的影响、不同放电参数对卡马西平降解率的影响、活性物质的产生和卡马西平的降解机理。结果表明,当CO2/Ar = 1/9,总气体流量为300 mL/min时,CO2的转化率(16.84%)和卡马西平的降解率(87.58%)均达到了最高。同时随着气体中CO2/Ar比例的减小,·OH、O3和H2O2等活性物质的含量也有了一定程度的提高,这主要与放电过程中促进CO2的碰撞和解离,产生活性氧原子,并通过传质等在液相中发生一系列化学反应,形成液相活性物质相关。最后通过液相色谱–质谱联用仪对卡马西平的降解中间产物进行检测,从而分析出卡马西平可能的降解路径。本研究为等离子体降解水体中有机污染物、CO2的转化再利用提供了一种新的思路。
In recent years, the detection rate of carbamazepine in natural water bodies has gradually increased due to its high usage, and it has become a new challenge to find a new efficient and clean method to treat carbamazepine. In this study, the carbamazepine solution flowing through the discharge area in the form of water film was effectively degraded by using CO2 and argon as discharge gases in a coaxial double-dielectric barrier discharge reactor. The effect of different ratio of CO2/Ar atmosphere plasma discharge on CO2 conversion, the effect of different discharge parameters on carbamazepine degradation rate, the production of active substances and the degradation mechanism of carbamazepine were studied. The results showed that when CO2/Ar = 1/9 and the total gas flow rate was 300 mL/min, the CO2 conversion rate (16.84%) and carbamazepine degradation rate (87.58%) reached the highest. At the same time, with the decrease of the CO2/Ar ratio in the gas, the content of active substances such as ·OH, O3 and H2O2 also increases to a certain extent, which is mainly related to the promotion of the collision and dissociation of CO2 during the discharge process, the generation of reactive oxygen atoms, and the formation of liquid phase active substances through a series of chemical reactions such as mass transfer. Finally, the degradation intermediates of carbamazepine were detected by liquid chromatography-mass spectrometry, and the possible degradation path of carbamazepine was analyzed. This study provides a new idea for the plasma degradation of organic pollutants in water and the conversion and reuse of CO2.
[1] | 张娟, 代朝猛, 周雪飞, 等. 水体中卡马西平的污染特征与赋存现状研究[J]. 给水排水, 2012, 48(6): 120-124. |
[2] | 巢铸, 夏鹏, 司静宜, 等. 我国淡水中卡马西平的水质基准初探及生态风险评估[J]. 环境工程, 2023, 41(4): 170-177. |
[3] | 周柒, 丁红蕾, 郭得通, 等. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
[4] | 陈忠林, 徐贞贞, 贲岳, 等. ZnOOH/O3催化臭氧化体系去除水中痕量对氯硝基苯[J]. 环境科学, 2007, 28(11): 2550-2556. |
[5] | 祝思频, 王春英, 王俊蔚, 等. Gd掺杂锐钛矿型TiO2光催化剂的制备及降解苯甲羟肟酸活性[J]. 硅酸盐学报, 2017, 45(10): 1495-1502. |
[6] | Aggelopoulos, C.A., Meropoulis, S., Hatzisymeon, M., Lada, Z.G. and Rassias, G. (2020) Degradation of Antibiotic Enrofloxacin in Water by Gas-Liquid NSP-DBD Plasma: Parametric Analysis, Effect of H2O2 and CaO2 Additives and Exploration of Degradation Mechanisms. Chemical Engineering Journal, 398, Article 125622. https://doi.org/10.1016/j.cej.2020.125622 |
[7] | Shang, K., Wang, H., Li, J., Lu, N., Jiang, N. and Wu, Y. (2017) Activation of Peroxydisulfate by Gas-Liquid Pulsed Discharge Plasma to Enhance the Degradation of P-Nitrophenol. Plasma Science and Technology, 19, Article 064017. https://doi.org/10.1088/2058-6272/aa6616 |
[8] | Wang, X., Luo, J., Huang, Y., Mei, J. and Chen, Y. (2021) Degradation of Pharmaceutical Contaminants by Bubbling Gas Phase Surface Discharge Plasma Combined with G-C3N4 Photocatalysis. Environmental Science: Water Research & Technology, 7, 610-621. https://doi.org/10.1039/d0ew00985g |
[9] | Wang, T., Qu, G., Ren, J., Sun, Q., Liang, D. and Hu, S. (2016) Organic Acids Enhanced Decoloration of Azo Dye in Gas Phase Surface Discharge Plasma System. Journal of Hazardous Materials, 302, 65-71. https://doi.org/10.1016/j.jhazmat.2015.09.051 |
[10] | Sahni, M. and Locke, B.R. (2006) Quantification of Hydroxyl Radicals Produced in Aqueous Phase Pulsed Electrical Discharge Reactors. Industrial & Engineering Chemistry Research, 45, 5819-5825. https://doi.org/10.1021/ie0601504 |
[11] | 张瑛洁, 马军, 张亮, 等. 钛盐分光光度法测定酸性染料体系中的过氧化氢[J]. 工业水处理, 2008, 28(11): 72-74. |
[12] | 蒋丽春, 唐绍明, 游青, 等. 靛蓝二磺酸钠褪色分光光度法测定水中臭氧[J]. 理化检验(化学分册), 2011, 47(2): 180-182. |
[13] | Xu, S., Whitehead, J.C. and Martin, P.A. (2017) CO2 Conversion in a Non-Thermal, Barium Titanate Packed Bed Plasma Reactor: The Effect of Dilution by Ar and N2. Chemical Engineering Journal, 327, 764-773. https://doi.org/10.1016/j.cej.2017.06.090 |
[14] | Anton, H. (1966) Zur Lumineszenz einiger molekülgase bei anregung durch schnelle elektronen. II. Annalen der Physik, 473, 178-193. https://doi.org/10.1002/andp.19664730312 |
[15] | Ramakers, M., Michielsen, I., Aerts, R., Meynen, V. and Bogaerts, A. (2015) Effect of Argon or Helium on the CO2 Conversion in a Dielectric Barrier Discharge. Plasma Processes and Polymers, 12, 755-763. https://doi.org/10.1002/ppap.201400213 |
[16] | 陈慧敏, 段戈辉, 梅丹华, 等. 气体添加对水电极同轴介质阻挡放电直接分解CO2的影响[J]. 电工技术学报, 2023, 38(1): 270-280. |
[17] | Mei, D. and Tu, X. (2017) Atmospheric Pressure Non-Thermal Plasma Activation of CO2 in a Packed-Bed Dielectric Barrier Discharge Reactor. ChemPhysChem, 18, 3253-3259. https://doi.org/10.1002/cphc.201700752 |
[18] | 胡佳俊, 陈雪燕, 程诚, 等. CO2/Ar气液相等离子体处理盐酸四环素的研究[J]. 真空科学与技术学报, 2023, 43(9): 771-781. |
[19] | Wang, G., Fang, S., Lin, B., et al. (2024) Mechanistic Study on 4,4’-Sulfonylbis Removal with CO2/Ar Gas-Liquid DBD Plasma. Plasma Science and Technology, 26, Article 105501. https://doi.org/10.1088/2058-6272/ad5118 |
[20] | 周栋. 介质阻挡放电等离子体协同Fe3+/亚硫酸盐降解废水中卡马西平的研究[D]: [硕士学位论文]. 合肥: 安徽建筑大学, 2023. |
[21] | Li, Z., Wang, Y., Guo, H., Pan, S., Puyang, C., Su, Y., et al. (2021) Insights into Water Film DBD Plasma Driven by Pulse Power for Ibuprofen Elimination in Water: Performance, Mechanism and Degradation Route. Separation and Purification Technology, 277, Article 119415. https://doi.org/10.1016/j.seppur.2021.119415 |
[22] | 龚诗. 湿壁介质阻挡放电等离子体协同活性炭纤维负载磷酸银复合催化剂处理水中左氧氟沙星的研究[D]: [硕士学位论文]. 南京: 南京大学, 2019. |
[23] | 杨兰, 刘瑞娟, 沈舒苏, 等. 纳秒脉冲介质阻挡放电等离子体去除水中全氟辛酸研究[J]. 石油化工高等学校学报, 2024, 37(1): 1-10. |
[24] | 王卿. 介质阻挡放电等离子体技术处理废水中有机药物的研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2019. |
[25] | 翟锦丽, 晏佳丽, 罗永明, 等. 氧化黄铁矿活化过二硫酸盐降解卡马西平[J]. 环境科学学报, 2024, 44(6): 101-112. |
[26] | Shen, J., Zhang, H., Xu, Z., Zhang, Z., Cheng, C., Ni, G., et al. (2019) Preferential Production of Reactive Species and Bactericidal Efficacy of Gas-Liquid Plasma Discharge. Chemical Engineering Journal, 362, 402-412. https://doi.org/10.1016/j.cej.2019.01.018 |
[27] | Locke, B.R. and Shih, K. (2011) Review of the Methods to Form Hydrogen Peroxide in Electrical Discharge Plasma with Liquid Water. Plasma Sources Science and Technology, 20, Article 034006. https://doi.org/10.1088/0963-0252/20/3/034006 |
[28] | 梁超. 低温等离子体处理废水中典型多环芳烃和抗生素的研究[D]: [硕士学位论文]. 合肥: 安徽建筑大学, 2024. |
[29] | Miao, X., Yang, J. and Metcalfe, C.D. (2005) Carbamazepine and Its Metabolites in Wastewater and in Biosolids in a Municipal Wastewater Treatment Plant. Environmental Science & Technology, 39, 7469-7475. https://doi.org/10.1021/es050261e |
[30] | Yang, Y., Ok, Y.S., Kim, K., Kwon, E.E. and Tsang, Y.F. (2017) Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Science of The Total Environment, 596-597, 303-320. https://doi.org/10.1016/j.scitotenv.2017.04.102 |
[31] | Hu, L., Martin, H.M., Arce-Bulted, O., Sugihara, M.N., Keating, K.A. and Strathmann, T.J. (2008) Oxidation of Carbamazepine by Mn(VII) and Fe(VI): Reaction Kinetics and Mechanism. Environmental Science & Technology, 43, 509-515. https://doi.org/10.1021/es8023513 |
[32] | 喻金明. 气液相等离子体协同催化剂降解水中卡马西平的研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2022. |
[33] | Doll, T.E. and Frimmel, F.H. (2005) Removal of Selected Persistent Organic Pollutants by Heterogeneous Photocatalysis in Water. Catalysis Today, 101, 195-202. https://doi.org/10.1016/j.cattod.2005.03.005 |
[34] | Zhai, J., Wang, Q., Li, Q., Shang, B., Rahaman, M.H., Liang, J., et al. (2018) Degradation Mechanisms of Carbamazepine by δ-MnO2: Role of Protonation of Degradation Intermediates. Science of The Total Environment, 640, 981-988. https://doi.org/10.1016/j.scitotenv.2018.05.368 |
[35] | Li, Y., Yang, Y., Lei, J., Liu, W., Tong, M. and Liang, J. (2021) The Degradation Pathways of Carbamazepine in Advanced Oxidation Process: A Mini Review Coupled with DFT Calculation. Science of The Total Environment, 779, Article 146498. https://doi.org/10.1016/j.scitotenv.2021.146498 |