|
RNA结合蛋白在非小细胞肺癌发生发展中的作用研究进展
|
Abstract:
肺癌已成为全球癌症患者死亡的主要原因,非小细胞肺癌(Non-small-cell lung cancer, NSCLC)是肺癌最常见的病理类型,约占肺癌的85%,NSCLC晚期转移和复发致使患者的预后较差。RNA结合蛋白(RNA-binding proteins, RBPs)是一类可以结合单链或双链RNA的蛋白质,在基因调控中发挥着举足轻重的作用,其涉及与rRNA、ncRNA、snRNA、miRNA、mRNA和tRNA等各种类型RNA的相互作用。RBPs是由多个重复序列所组成,这些重复序列构成RNA识别结合域,RNA结合域排列组合赋予了RBPs功能的多样性。其表达失调在细胞增殖、血管再生、细胞凋亡抑制中扮演着关键的角色。RBPs在多种肿瘤组织中过表达,可通过调控不同的信号通路,参与肿瘤细胞增殖、侵袭、迁移等生物学过程。基于RBPs在NSCLC的分子标志物及其生物学和作用机制成为近年来研究的焦点,本文综述了RBPs在NSCLC发生发展的最新研究进展,总结了RBPs的作用机制、表达调控以及在肿瘤侵袭和转移中的生物意义,为肿瘤的新型诊断标记和治疗靶点的发现提供新思路。
Lung cancer has become the leading cause of death in the world. Non-small-cell lung cancer (NSCLC) is the most common pathological type of lung cancer, accounting for about 85% of lung cancer. Advanced metastasis and recurrence of NSCLC lead to poor prognosis. RNA-binding proteins (RBPs) are a class of proteins that can bind single-stranded or double-stranded RNA, and play an important role in gene regulation. They involve interactions with various types of RNA such as rRNA, ncRNA, snRNA, miRNA, mRNA, and tRNA. RBPs are composed of multiple repetitive sequences, which constitute RNA recognition and binding domains. The arrangement and combination of RNA binding domains endow RBPs with functional diversity. Its dysregulation plays a key role in cell proliferation, angiogenesis, and apoptosis inhibition. RBPs are overexpressed in a variety of tumor tissues and involved in tumor cell proliferation, invasion, migration and other biological processes by regulating different signaling pathways. The molecular markers of RBPs in NSCLC and their biological and mechanism of action have become the focus of research in recent years. This article reviews the latest research progress of RBPs in the development of NSCLC, and summarizes the mechanism of action, expression regulation and biological significance of RBPs in tumor invasion and metastasis. It provides new ideas for the discovery of new diagnostic markers and therapeutic targets of tumors.
[1] | 王渤文, 倪少滨. RNA结合蛋白在肾癌发生发展中作用机制及生物学功能的研究进展[J]. 现代肿瘤医学, 2023, 31(11): 2155-2160. |
[2] | 王金柱, 赵一鸣, 蒋琰, 于新媛, 王伟康, 王鹿宁, 等. RNA结合蛋白在肿瘤中的作用[J]. 生命的化学, 2024, 44(9): 1620-1628. |
[3] | 朱哈, 刘娟, 曹雪涛. RNA结合蛋白与肿瘤生物治疗: 新机遇与新策略[J]. 中国肿瘤生物治疗杂志, 2023, 30(1): 1-9. |
[4] | Qin, H., Ni, H., Liu, Y., Yuan, Y., Xi, T., Li, X., et al. (2020) RNA-binding Proteins in Tumor Progression. Journal of Hematology & Oncology, 13, Article No. 90. https://doi.org/10.1186/s13045-020-00927-w |
[5] | Li, W., Gao, L., Song, P. and You, C. (2020) Development and Validation of a RNA Binding Protein-Associated Prognostic Model for Lung Adenocarcinoma. Aging, 12, 3558-3573. https://doi.org/10.18632/aging.102828 |
[6] | Zhu, Y., Zheng, B., Luo, G., Ma, X., Lu, X., Lin, X., et al. (2019) Circular RNAs Negatively Regulate Cancer Stem Cells by Physically Binding FMRP against CCAR1 Complex in Hepatocellular Carcinoma. Theranostics, 9, 3526-3540. https://doi.org/10.7150/thno.32796 |
[7] | Van Nostrand, E.L., Freese, P., Pratt, G.A., Wang, X., Wei, X., Xiao, R., et al. (2020) A Large-Scale Binding and Functional Map of Human RNA-Binding Proteins. Nature, 583, 711-719. https://doi.org/10.1038/s41586-020-2077-3 |
[8] | Chekulaeva, M. (2024) Mechanistic Insights into the Basis of Widespread RNA Localization. Nature Cell Biology, 26, 1037-1046. https://doi.org/10.1038/s41556-024-01444-5 |
[9] | Bradley, R.K. and Anczuków, O. (2023) RNA Splicing Dysregulation and the Hallmarks of Cancer. Nature Reviews Cancer, 23, 135-155. https://doi.org/10.1038/s41568-022-00541-7 |
[10] | Zhou, Z., Lv, J., Yu, H., Han, J., Yang, X., Feng, D., et al. (2020) Mechanism of RNA Modification N6-Methyladenosine in Human Cancer. Molecular Cancer, 19, Article No. 104. https://doi.org/10.1186/s12943-020-01216-3 |
[11] | Wang, S., Sun, Z., Lei, Z. and Zhang, H. (2022) RNA-Binding Proteins and Cancer Metastasis. Seminars in Cancer Biology, 86, 748-768. https://doi.org/10.1016/j.semcancer.2022.03.018 |
[12] | Sun Y, Chen D, Sun S, Ren M, Zhou L, Chen C, et al. (2024) RBMS Sun, Y., Chen, D., Sun, S., Ren, M., Zhou, L., Chen, C., et al. (2024) RBMS1 Coordinates with the M6a Reader YTHDF1 to Promote NSCLC Metastasis through Stimulating S100P Translation. Advanced Science, 11, e2307122. https://doi.org/10.1002/advs.202307122 |
[13] | Wang, C., Zou, J., Ma, X., Wang, E. and Peng, G. (2017) Mechanisms and Implications of Adar-Mediated RNA Editing in Cancer. Cancer Letters, 411, 27-34. https://doi.org/10.1016/j.canlet.2017.09.036 |
[14] | Wang, X., Xu, Z., Ren, X., Chen, X., Wei, J., Lin, W., et al. (2019) Function of Low ADARB1 Expression in Lung Adenocarcinoma. PLOS ONE, 14, e0222298. https://doi.org/10.1371/journal.pone.0222298 |
[15] | Dasgupta, T. and Ladd, A.N. (2011) The Importance of CELF Control: Molecular and Biological Roles of the CUG-BP, Elav-Like Family of RNA-Binding Proteins. WIREs RNA, 3, 104-121. https://doi.org/10.1002/wrna.107 |
[16] | Wang, Z., Li, B., Luo, Y., Lin, Q., Liu, S., Zhang, X., et al. (2018) Comprehensive Genomic Characterization of Rna-Binding Proteins across Human Cancers. Cell Reports, 22, 286-298. https://doi.org/10.1016/j.celrep.2017.12.035 |
[17] | Subramaniam, D., Natarajan, G., Ramalingam, S., Ramachandran, I., May, R., Queimado, L., et al. (2008) Translation Inhibition during Cell Cycle Arrest and Apoptosis: Mcl-1 Is a Novel Target for RNA Binding Protein Cugbp2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294, G1025-G1032. https://doi.org/10.1152/ajpgi.00602.2007 |
[18] | Yeung, Y.T., Fan, S., Lu, B., Yin, S., Yang, S., Nie, W., et al. (2019) CELF2 Suppresses Non-Small Cell Lung Carcinoma Growth by Inhibiting the PREX2-PTEN Interaction. Carcinogenesis, 41, 377-389. https://doi.org/10.1093/carcin/bgz113 |
[19] | Yang, Y., Cheng, Y., Mou, Y., Tang, X. and Mu, X. (2023) Natural Antisense Long Noncoding RNA HHIP-AS1 Suppresses Non-Small-Cell Lung Cancer Progression by Increasing HHIP Stability via Interaction with Celf2. Critical Reviews in Eukaryotic Gene Expression, 33, 67-77. https://doi.org/10.1615/critreveukaryotgeneexpr.2022043174 |
[20] | Zhang, Q. and Wang, Y. (2022) Mir-210-3p Targets CELF2 to Facilitate Progression of Lung Squamous Carcinoma through PI3K/AKT Pathway. Medical Oncology, 39, Article No. 161. https://doi.org/10.1007/s12032-022-01752-6 |
[21] | Kondo, T., Furuta, T., Mitsunaga, K., Ebersole, T.A., Shichiri, M., Wu, J., et al. (1999) Genomic Organization and Expression Analysis of the Mouse qkI Locus. Mamm Genome, 10, 662-669. |
[22] | Zong, F., Fu, X., Wei, W., Luo, Y., Heiner, M., Cao, L., et al. (2014) The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant Splicing. PLoS Genetics, 10, e1004289. https://doi.org/10.1371/journal.pgen.1004289 |
[23] | Pillman, K.A., Phillips, C.A., Roslan, S., Toubia, J., Dredge, B.K., Bert, A.G., et al. (2018) miR-200/375 Control Epithelial Plasticity-Associated Alternative Splicing by Repressing the RNA-Binding Protein Quaking. The EMBO Journal, 37, e99016. https://doi.org/10.15252/embj.201899016 |
[24] | Wang, J., Fu, X., Fang, Z., Liu, H., Zong, F., Zhu, H., et al. (2020) QKI-5 Regulates the Alternative Splicing of Cytoskeletal Gene add3 in Lung Cancer. Journal of Molecular Cell Biology, 13, 347-360. https://doi.org/10.1093/jmcb/mjaa063 |
[25] | Zhu, W., Yu, Y., Fang, K., Xiao, S., Ni, L., Yin, C., et al. (2022) miR-31/QKI-5 Axis Facilitates Cell Cycle Progression of Non-Small-Cell Lung Cancer Cells by Interacting and Regulating P21 and CDK4/6 Expressions. Cancer Medicine, 12, 4590-4604. https://doi.org/10.1002/cam4.5309 |
[26] | 王胜洁. KLF6/QKI-5/TGFβR1轴调控TGF-β/SMAD信号通路抑制肺腺癌EMT、侵袭和转移的机制研究[D]: [博士学位论文]. 苏州: 苏州大学, 2021. |
[27] | Lai, W.S., Carballo, E., Thorn, J.M., Kennington, E.A. and Blackshear, P.J. (2000) Interactions of CCCH Zinc Finger Proteins with mRNA. Journal of Biological Chemistry, 275, 17827-17837. https://doi.org/10.1074/jbc.m001696200 |
[28] | Guo, J., Qu, H., Chen, Y. and Xia, J. (2017) The Role of RNA-Binding Protein Tristetraprolin in Cancer and Immunity. Medical Oncology, 34, Article No. 196. https://doi.org/10.1007/s12032-017-1055-6 |
[29] | Zhang, T., Qiu, L., Cao, J., Li, Q., Zhang, L., An, G., et al. (2023) ZFP36 Loss-Mediated BARX1 Stabilization Promotes Malignant Phenotypes by Transactivating Master Oncogenes in NSCLC. Cell Death & Disease, 14, Article No. 527. https://doi.org/10.1038/s41419-023-06044-z |