全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳化硼在冶金工业中的应用研究进展
Research Progress on the Application of Boron Carbide in the Field of Metallurgical Industry

DOI: 10.12677/ms.2025.154074, PP. 698-704

Keywords: 碳化硼,冶金工业,应用进展,挑战,对策
Boron Carbide
, Metallurgical Industry, Application Progress, Challenges, Response Strategies

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳化硼(B4C)凭借其高硬度、高熔点和优异的化学稳定性,在冶金工业中展现出广泛的应用潜力。本文系统梳理了碳化硼在炼钢、有色金属冶炼、冶金炉衬材料、金属基复合材料等领域的应用进展,分析了其在提升材料性能、优化生产工艺方面的作用。然而,碳化硼的应用仍面临制备成本高、界面相容性差等挑战。本文提出了创新制备工艺、界面优化及智能化应用等应对策略,展望了碳化硼在冶金工业中的未来应用前景,助力冶金产业的高质量发展。
Boron carbide (B4C), with its high hardness, high melting point, and excellent chemical stability, demonstrates significant potential for applications in the metallurgical industry. This paper systematically reviews the progress of boron carbide in various fields, including steelmaking, non-ferrous metal smelting, metallurgical furnace lining materials, and metal matrix composites, analyzing its role in enhancing material properties and optimizing production processes. However, the application of boron carbide still faces challenges such as high preparation costs and poor interfacial compatibility. This paper proposes strategies to address these challenges, including innovative preparation processes, interface optimization, and intelligent application techniques. Furthermore, it envisions the future application prospects of boron carbide in the metallurgical industry, contributing to the high-quality development of the metallurgical sector.

References

[1]  姜周华, 董艳伍, 刘福斌, 等. 我国特种冶金产品、技术和装备的最新进展与展望[J]. 特殊钢, 2024, 45(4): 1-12.
[2]  李翔. 冶金过程中的资源节约与环境保护措施[J]. 冶金与材料, 2023, 43(9): 59-61.
[3]  Xiang, Q., Zhang, D. and Qin, J. (2016) Catholic Electrophoretic Deposition of Nano-B4C Coating. Materials Letters, 176, 127-130.
https://doi.org/10.1016/j.matlet.2016.04.105
[4]  Saeedi Heydari, M. and Baharvandi, H.R. (2015) Comparing the Effects of Different Sintering Methods for Ceramics on the Physical and Mechanical Properties of B4C-TiB2 Nanocomposites. International Journal of Refractory Metals and Hard Materials, 51, 224-232.
https://doi.org/10.1016/j.ijrmhm.2015.04.003
[5]  邹鑫, 陈平安, 徐广平, 等. 碳化硼材料的烧结致密化及其应用研究进展[J]. 耐火材料, 2022, 56(5): 452-457.
[6]  李洋. 以生物质炭为碳源制备碳化硼及碳化硼性能研究[D]: [博士学位论文]. 沈阳: 沈阳工业大学, 2023.
[7]  章晓波, 刘宁. 碳化硼材料的性能、制备与应用[J]. 硬质合金, 2006, 23(2): 120-125.
[8]  Kozień, D., Żeliszewska, P., Szermer-Olearnik, B., Adamczyk, Z., Wróblewska, A., Szczygieł, A., et al. (2023) Synthesis and Characterization of Boron Carbide Nanoparticles as Potential Boron-Rich Therapeutic Carriers. Materials, 16, Article No. 6534.
https://doi.org/10.3390/ma16196534
[9]  刘爱东. 碳化硼复合材料的制备及力学性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2011.
[10]  王方标, 魏瑞莹, 王丽娟, 等. 碳化硼陶瓷的高温高压制备及性能研究[J]. 超硬材料工程, 2024, 36(1): 35-40.
[11]  张巍, 张杰. 碳化硼陶瓷自润滑研究现状[J]. 中国表面工程, 2024, 37(3): 103-114.
[12]  宋绍翠. 碳化硼复相陶瓷的制备与表征[D] : [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021.
[13]  Shi, W., Tang, M., Duan Q., Gong, D. and Xu, F. (2024) Influence of Thinner Flaked Al Powder with Larger Diameter on the Distribution of B4C Particles and Tensile Properties of B4C/Al Composite. Materials Testing, 66, 1620-1626.
https://doi.org/10.1515/mt-2024-0184
[14]  杜文轩, 王帅, 孙瑶, 等. 碳化硼的制备及其在电池储能和核能中的应用[J]. 铁合金, 2024, 55(1): 31-35.
[15]  游爱清, 线恒泽. 碳化硼的化学稳定性及湿溶研究[J]. 冶金分析, 1998, 18(4): 50-52.
[16]  刘磊. 高温诱导钛锆基合金表面氧化膜形成机理及摩擦学性能研究[D]: [硕士学位论文]. 合肥: 合肥大学, 2024.
[17]  王彬, 李芹鹏, 彭勇, 等. 晶粒细化对免热处理压铸铝合金组织与性能的影响[J]. 铸造工程, 2025, 49(1): 11-14.
[18]  Wu, P., Jia, Q., He, J., Lu, L., Chen, L., Zhu, J., et al. (2020) Mechanical Exfoliation of Boron Carbide: A Metal-Free Catalyst for Aerobic Oxidative Desulfurization in Fuel. Journal of Hazardous Materials, 391, Article ID: 122183.
https://doi.org/10.1016/j.jhazmat.2020.122183
[19]  薛修治. 用碳化硅作炼钢脱氧剂的应用实践与理论探讨[J]. 铸造设备与工艺, 2016(4): 28-30.
[20]  Ransley, C.E. (1962) Refractory Carbides and Borides for Aluminum Reduction Cells. Journal of Metals, 14, 129-135.
https://doi.org/10.1007/bf03378134
[21]  乔晓明, 胡明钰. 延长铝电解槽寿命研究[J]. 世界有色金属, 2023(10): 4-6.
[22]  邵荣丹, 何见林, 丛培源, 等. 抗氧化剂对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 耐火与石灰, 2023, 48(5): 20-25+28.
[23]  Wang, A., He, Q., Liu, C., Hu, L., Tian, T., Zhang, Z., et al. (2020) Microstructure and Mechanical Properties of Boron Carbide/Graphene Nanoplatelets Composites Fabricated by Hot Pressing. Ceramics International, 46, 7879-7887.
https://doi.org/10.1016/j.ceramint.2019.12.007
[24]  杨艳龙, 王新虎, 钟志俭. 耐火材料在金属冶炼炉窑上的应用[J]. 大众标准化, 2024(20): 142-144.
[25]  Alrobei, H. (2020) Effect of Different Parameters and Aging Time on Wear Resistance and Hardness of SiC-B4C Reinforced AA6061 Alloy. Journal of Mechanical Science and Technology, 34, 2027-2034.
https://doi.org/10.1007/s12206-020-0424-9
[26]  曹洪. 碳化硼颗粒增强铝基复合材料的制备及力学性能研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2022.
[27]  Mironovs, V., Usherenko, Y., Boiko, I. and Kuzmina, J. (2022) Recycling of Aluminum-Based Composites Reinforced with Boron-Tungsten Fibres. Materials, 15, Article No. 3207.
https://doi.org/10.3390/ma15093207
[28]  征立志, 周玉兰, 张云虎, 等. 碳纤维增强金属基复合材料的研究进展[J]. 上海金属, 2023, 45(4): 1-9.
[29]  贾庆伟, 齐志刚, 李金锋, 等. 碳化硼对Al2O3-SiC-C铁沟料性能的影响[C]. 第十七届全国不定形耐火材料学术会议论文集, 2023: 21-26.
[30]  Pang, Z., Lv, X., Jiang, Y., Ling, J. and Yan, Z. (2019) Blast Furnace Ironmaking Process with Super-High TiO2 in the Slag: Viscosity and Melting Properties of the Slag. Metallurgical and Materials Transactions B, 51, 722-731.
https://doi.org/10.1007/s11663-019-01756-0
[31]  郑伟, 刘晓青, 宋欣. 硼在炼钢过程中的冶金行为及对钢板力学性能的影响[J]. 辽宁科技大学学报, 2019, 42(6): 406-409.
[32]  Zeng, X. and Liu, W. (2016) Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon. Journal of Materials Engineering and Performance, 25, 5014-5019.
https://doi.org/10.1007/s11665-016-2313-z
[33]  张善伟. 碳化硼基复合陶瓷材料的制备及性能研究[D]: [硕士学位论文]. 上海: 上海工程技术大学, 2018.
[34]  王晓楠. 高性能碳化硼基复相陶瓷材料的高温高压合成及其强韧化机制研究[D]: [博士学位论文]. 长春: 吉林大学, 2023.
[35]  Roma, G. and Schuler, T. (2023) Evidence of Interstitial-Mediated Boron Self-Diffusion in Boron Carbide. Solid State Sciences, 146, Article ID: 107330.
https://doi.org/10.1016/j.solidstatesciences.2023.107330
[36]  钱耀川, 丁华东, 傅苏黎. 碳化硼表面金属化初步研究[J]. 装甲兵工程学院学报, 2005(3): 73-75.
[37]  苗书东, 韩彦朝. 铁基合金粉末中碳化硼添加量对喷焊层性能的影响[J]. 有色矿冶, 2014, 30(2): 43-45.
[38]  郭在在, 曹剑武, 燕东明, 等. 碳化硼陶瓷粉体制备研究进展[J]. 兵器装备工程学报, 2017, 38(12): 278-280.
[39]  Vijay, S.K., Prabhu, R.K., Annie, D., Chandramouli, V., Anthonysamy, S. and Jain, A. (2020) Microwave-Assisted Preparation of Precursor for the Synthesis of Nanocrystalline Boron Carbide Powder. Transactions of the Indian Ceramic Society, 79, 244-250.
https://doi.org/10.1080/0371750x.2020.1832581
[40]  Alexander, R., Murthy, T.S.R.C., Vasanthakumar, K., Karthiselva, N.S., Bakshi, S.R. and Dasgupta, K. (2018) In-Situ Synthesis and Densification of Boron Carbide and Boron Carbide-Graphene Nanoplatelet Composite by Reactive Spark Plasma Sintering. Ceramics International, 44, 21132-21137.
https://doi.org/10.1016/j.ceramint.2018.08.154
[41]  张迪嘉. 纤维增强碳化硼复合材料的制备及性能研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2022.
[42]  张晓平, 容远嘉, 王潜雁, 等. 原位表征技术在锂氧气电池中的研究进展[J]. 储能科学与技术, 2024, 13(4): 1225-1238.
[43]  李娜, 柯红军, 汪东, 等. 碳纤维表面改性及其对热塑性复合材料界面性能影响的研究进展[J]. 现代化工, 2024, 44(2): 72-75.
[44]  张茂林, 王磊, 李昊天. 以新一代副枪为主的全程一键智能炼钢技术[J]. 冶金信息导刊, 2024, 61(6): 40-43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133