|
Material Sciences 2025
含多孔介质的波纹管内海藻酸钠纳米流体流动与传热特性的数值研究
|
Abstract:
本研究通过对海藻酸钠–四氧化三铁纳米流体在多孔介质波纹管内流动与传热特性的分析,旨在提升光伏系统的冷却效果,解决光伏板温度分布不均的问题。首先,我们测量并拟合海藻酸钠纳米流体的导热系数公式,选用Maxwell本构方程来描述其粘弹性特性。接着,将本构方程和导热系数公式作为参数文件导入求解器中进行模拟,展示光伏表面温度分布等图像,并分析不同物理参数对光伏系统性能的影响。结果显示,多孔介质可以增加流体与壁面的接触,提高传热效率。加入四氧化三铁纳米粒子还能优化光伏板的温度分布,减少局部热点。不同多孔固体基质材料对系统性能有不同的影响。缩短松弛时间可以提高海藻酸钠纳米流体对温度变化的适应性,同时降低光伏板表面温度。
This study aims to improve the cooling effect of the photovoltaic system and solve the problem of uneven temperature distribution of photovoltaic panels by analyzing the flow and heat transfer characteristics of sodium alginate-ferric oxide nanofluid in corrugated tubes with porous medium. First, we measure and fit the thermal conductivity formula of sodium alginate nanofluid and then use the Maxwell constitutive equation to describe its viscoelastic properties. Next, we import the constitutive equation and thermal conductivity formula into the solver as parameter files for simulation. The simulation displays images such as the temperature distribution on the photovoltaic surface. We also analyze the effects of different parameters on the performance of the photovoltaic system. The results show that porous medium can increase the contact between fluid and wall surface and improve heat transfer efficiency. Adding ferric oxide nanoparticles can also optimize the temperature distribution of photovoltaic panels and reduce local hot spots. Different porous solid matrix materials have varying effects on system performance. Shortening the relaxation time improves the adaptability of sodium alginate nanofluid to temperature changes and reduces the surface temperature of photovoltaic panels.
[1] | 崔歆韬. 双玻光伏组件的热电分析及辐射降温研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023. |
[2] | Kazemian, A., Ma, T. and Hongxing, Y. (2024) Evaluation of Various Collector Configurations for a Photovoltaic Thermal System to Achieve High Performance, Low Cost, and Lightweight. Applied Energy, 357, Article ID: 122422. https://doi.org/10.1016/j.apenergy.2023.122422 |
[3] | Shen, Y., Hocksun Kwan, T. and Yang, H. (2022) Parametric and Global Seasonal Analysis of a Hybrid PV/T-CCA System for Combined CO2 Capture and Power Generation. Applied Energy, 311, Article ID: 118681. https://doi.org/10.1016/j.apenergy.2022.118681 |
[4] | Hossain, M.S., Pandey, A.K., Selvaraj, J., Abd Rahim, N., Rivai, A. and Tyagi, V.V. (2019) Thermal Performance Analysis of Parallel Serpentine Flow Based Photovoltaic/Thermal (PV/T) System under Composite Climate of Malaysia. Applied Thermal Engineering, 153, 861-871. https://doi.org/10.1016/j.applthermaleng.2019.01.007 |
[5] | Eisapour, M., Eisapour, A.H., Hosseini, M.J. and Talebizadehsardari, P. (2020) Exergy and Energy Analysis of Wavy Tubes Photovoltaic-Thermal Systems Using Microencapsulated PCM Nano-Slurry Coolant Fluid. Applied Energy, 266, Article ID: 114849. https://doi.org/10.1016/j.apenergy.2020.114849 |
[6] | Aghakhani, S. and Afrand, M. (2022) Experimental Study of the Effect of Simultaneous Application of the Air-and Water-Cooled Flow on Efficiency in a Photovoltaic Thermal Solar Collector with Porous Plates. Applied Thermal Engineering, 217, Article ID: 119161. https://doi.org/10.1016/j.applthermaleng.2022.119161 |
[7] | Asefi, G., Ma, T. and Wang, R. (2022) Parametric Investigation of Photovoltaic-Thermal Systems Integrated with Porous Phase Change Material. Applied Thermal Engineering, 201, Article ID: 117727. https://doi.org/10.1016/j.applthermaleng.2021.117727 |
[8] | Sangtarash, A., Maadi, S.R., Taylor, R.A., Arabkoohsar, A., Wongwises, S., Sheremet, M., et al. (2024) A Comprehensive Investigation of Porous Media’s Effects on the Performance of Photovoltaic Thermal Systems. Applied Thermal Engineering, 245, Article ID: 122766. https://doi.org/10.1016/j.applthermaleng.2024.122766 |
[9] | Ali, K., Ahmad, S., Ahmad, S., Jamshed, W., Tirth, V., Algahtani, A., et al. (2023) Insights into the Thermal Attributes of Sodium Alginate (Nacho) Based Nanofluids in a Three-Dimensional Rotating Frame: A Comparative Case Study. Case Studies in Thermal Engineering, 49, Article ID: 103211. https://doi.org/10.1016/j.csite.2023.103211 |
[10] | Wahab, A., Khan, M.A.Z. and Hassan, A. (2020) Impact of Graphene Nanofluid and Phase Change Material on Hybrid Photovoltaic Thermal System: Exergy Analysis. Journal of Cleaner Production, 277, Article ID: 123370. https://doi.org/10.1016/j.jclepro.2020.123370 |
[11] | 刘畅, 陈艳军, 张超灿. 用于冷链的低温相变材料的研究进展[J]. 化工进展, 2022, 41(1): 286-299. |
[12] | Hatami, M. and Ganji, D.D. (2013) Heat Transfer and Flow Analysis for Sa-TiO2 Non-Newtonian Nanofluid Passing through the Porous Media between Two Coaxial Cylinders. Journal of Molecular Liquids, 188, 155-161. https://doi.org/10.1016/j.molliq.2013.10.009 |
[13] | Akinshilo, A.T., Olofinkua, J.O. and Olaye, O. (2017) Flow and Heat Transfer Analysis of the Sodium Alginate Conveying Copper Nanoparticles between Two Parallel Plates. Journal of Applied and Computational Mechanics, 3, 258-266. |
[14] | 李彦军, 金正浩, 李舒宏. 纳米TiO2对NH3-H2O-LiBr工质降膜吸收性能的影响[J]. 制冷技术, 2024, 44(1): 16-23. |
[15] | 丁军, 索双富, 张琦, 等. 橡胶材料黏弹本构关系研究综述[J]. 合成橡胶工业, 2022, 45(6): 523-529. |
[16] | Bafe, E.E., Firdi, M.D. and Enyadene, L.G. (2024) Entropy Generation and Cattaneo-Christov Heat Flux Analysis of Binary and Ternary Hybrid Maxwell Nanofluid Flows with Slip and Convective Conditions. Case Studies in Thermal Engineering, 61, Article ID: 104986. https://doi.org/10.1016/j.csite.2024.104986 |
[17] | 沈洋, 王企鲲, 刘唐京. 两种典型粘弹性流体——Giesekus流体与FENE-P流体的流变特性[J]. 建模与仿真, 2023, 12(5): 4559-4569. |
[18] | 郑智颖. FLUENT在粘弹性流体流动数值模拟中的应用[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013. |
[19] | Gürsoy, E., Kadir Pazarlıoğlu, H., Dağdeviren, A., Gürdal, M., Gedik, E., Arslan, K., et al. (2022) Energy Analysis of Magnetite Nanofluid Flowing in Newly Designed Sudden Expansion Tube Retrofitted with Dimpled Fin. International Journal of Heat and Mass Transfer, 199, Article ID: 123446. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123446 |
[20] | Qiao, Y., Yang, X., Xu, H. and Qi, H. (2024) Numerical Analysis of Two-Dimensional MHD Flow and Heat Transfer of Generalized Maxwell Fluid through a Rectangular Pipe. International Journal of Heat and Fluid Flow, 106, Article ID: 109303. https://doi.org/10.1016/j.ijheatfluidflow.2024.109303 |
[21] | Salman, A.H.A., Hilal, K.H. and Ghadhban, S.A. (2022) Enhancing Performance of PV Module Using Water Flow through Porous Media. Case Studies in Thermal Engineering, 34, Article ID: 102000. https://doi.org/10.1016/j.csite.2022.102000 |
[22] | Joshi, A.S., Tiwari, A., Tiwari, G.N., Dincer, I. and Reddy, B.V. (2009) Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T) (Glass-to-Glass) System. International Journal of Thermal Sciences, 48, 154-164. https://doi.org/10.1016/j.ijthermalsci.2008.05.001 |
[23] | Metzler, R. (2003) Fractional Relaxation Processes and Fractional Rheological Models for the Description of a Class of Viscoelastic Materials. International Journal of Plasticity, 19, 941-959. https://doi.org/10.1016/s0749-6419(02)00087-6 |